

# Wholesale funding runs

### Christophe Pérignon David Thesmar Guillaume Vuillemey

### **HEC** Paris

### Regulation and Systemic Risk Workshop Université Paris Dauphine

#### Mar. 2016

## Motivation



### Wholesale funding growing source of bank funding

Repurchase agreements, interbank debt, certificates of deposit

## Motivation



- Wholesale funding growing source of bank funding
  - Repurchase agreements, interbank debt, certificates of deposit

#### Prevailing view: Wholesale funding subject to market freezes

- Retail depositors are insured
- Wholesale lenders are uninsured
- Asymmetric information can lead to adverse selection / freezes

## Motivation



- Wholesale funding growing source of bank funding
  - Repurchase agreements, interbank debt, certificates of deposit

#### Prevailing view: Wholesale funding subject to market freezes

- Retail depositors are insured
- Wholesale lenders are uninsured
- Asymmetric information can lead to adverse selection / freezes

#### • Wholesale funding penalized by new liquidity regulation

Tarullo (2014): "The LCR [liquidity coverage ratio] should also encourage banks to reduce the use of very short-term wholesale funding that increases buffer [of high-quality assets] requirements."

## Hypothesis



### Theory: Asymmetric information induces adverse selection

- High- and low-quality banks are indistinguishable by lenders
- Good banks can be prevented from borrowing
- Freezes more likely in stress periods  $\rightarrow$  Higher dispersion of quality

## Hypothesis



### • Theory: Asymmetric information induces adverse selection

- High- and low-quality banks are indistinguishable by lenders
- Good banks can be prevented from borrowing
- $\blacksquare$  Freezes more likely in stress periods  $\rightarrow$  Higher dispersion of quality

### Bank quality

- Quality not defined based on observables
- Proxy for unobserved quality: future performance

## Hypothesis



### Theory: Asymmetric information induces adverse selection

- High- and low-quality banks are indistinguishable by lenders
- Good banks can be prevented from borrowing
- $\blacksquare$  Freezes more likely in stress periods  $\rightarrow$  Higher dispersion of quality

### Bank quality

- Quality not defined based on observables
- Proxy for unobserved quality: future performance

### Two null hypotheses

- H1: High- and low-quality banks are equally likely to lose access to wholesale funding in times of stress
- **H2:** When runs occur, the cross-sectional reallocation of funds is random.

## The paper



### Ideal laboratory: certificate of deposit (CD) market

- $\blacksquare$  Unsecured  $\rightarrow$  Asymmetric information on credit risk, not collateral
- Lenders are money market funds  $\rightarrow$  No liquidity hoarding
- Large cross-section of runs over 2008-2014 period
- No previous studies on this market

## The paper



### Ideal laboratory: certificate of deposit (CD) market

- $\blacksquare$  Unsecured  $\rightarrow$  Asymmetric information on credit risk, not collateral
- Lenders are money market funds  $\rightarrow$  No liquidity hoarding
- Large cross-section of runs over 2008-2014 period
- No previous studies on this market

#### Banks facing runs significantly weaker

- Weaker on observable characteristics
- Runs forecast lower future performance
- Future well-performing banks increase funding during market stress

## The paper



### Ideal laboratory: certificate of deposit (CD) market

- $\blacksquare$  Unsecured  $\rightarrow$  Asymmetric information on credit risk, not collateral
- Lenders are money market funds  $\rightarrow$  No liquidity hoarding
- Large cross-section of runs over 2008-2014 period
- No previous studies on this market

#### Banks facing runs significantly weaker

- Weaker on observable characteristics
- Runs forecast lower future performance
- Future well-performing banks increase funding during market stress

#### No evidence that asymmetric information is first-order

- Potential explanation for market resilience
- Potential challenge for imposing regulatory liquidity ratios

### Data on certificates of deposits



### Certificate of deposit (CD) contract

- Issued by credit institutions
- Initial maturity between one day and one year
- Unsecured
- Minimum amount EUR 150,000 per CD
- Issued over-the-counter, placed mostly to money market funds

### Data on certificates of deposits



### Certificate of deposit (CD) contract

- Issued by credit institutions
- Initial maturity between one day and one year
- Unsecured
- Minimum amount EUR 150,000 per CD
- Issued over-the-counter, placed mostly to money market funds

### CD dataset

- From Banque de France, over 2008-2014 period
- 1,383,202 ISIN-level observations, with 838,703 individual ISINs
- All events affecting an ISIN: issuance, re-issuance, buybacks
- Volume and maturity data

### Data on certificates of deposits



### Certificate of deposit (CD) contract

- Issued by credit institutions
- Initial maturity between one day and one year
- Unsecured
- Minimum amount EUR 150,000 per CD
- Issued over-the-counter, placed mostly to money market funds

### CD dataset

- From Banque de France, over 2008-2014 period
- 1,383,202 ISIN-level observations, with 838,703 individual ISINs
- All events affecting an ISIN: issuance, re-issuance, buybacks
- Volume and maturity data

### More than 80% of all euro-denominated CDs

## CD market versus other wholesale markets





- Similar size as the repo market
- Larger than ECB funding and unsecured interbank market
- No system-wide freeze in CD market  $\rightarrow$  [See]

## CD issuers



### CD issuers

- 276 individual issuers
- 196 French, 80 from IT, DE, UK, NL, IE, etc.
- Most large European banks are in the data

## CD issuers



### CD issuers

- 276 individual issuers
- 196 French, 80 from IT, DE, UK, NL, IE, etc.
- Most large European banks are in the data

#### Matching with balance sheet and market data

- 263 issuers matched with balance sheet data from Bankscope
- Short-term credit ratings, primarily from Fitch
- Stock price and CDS spread data from Bloomberg



### Definitions of runs

- Full run: Amount outstanding falls to zero
- Partial runs: Loses 50% or more in 50 days or less

### Definitions of runs

- Full run: Amount outstanding falls to zero
- Partial runs: Loses 50% or more in 50 days or less

#### Measurement

- Exclude issuers with < 100 million EUR before runs
- Exclude if less than 1 issuance per week before run
- Exclude mergers, acquisitions, nationalizations

### Definitions of runs

- Full run: Amount outstanding falls to zero
- Partial runs: Loses 50% or more in 50 days or less

#### Measurement

- Exclude issuers with < 100 million EUR before runs
- Exclude if less than 1 issuance per week before run
- Exclude mergers, acquisitions, nationalizations

#### Demand driven?

- $\blacksquare$  CDs cheaper that interbank loans [See] and ECB funding  $\rightarrow$  [See]
- Maturity shortening before runs  $\rightarrow$  [See table]
- Use Factiva to collect news around runs

### Definitions of runs

- Full run: Amount outstanding falls to zero
- Partial runs: Loses 50% or more in 50 days or less

#### Measurement

- Exclude issuers with < 100 million EUR before runs
- Exclude if less than 1 issuance per week before run
- Exclude mergers, acquisitions, nationalizations

### Demand driven?

- $\blacksquare$  CDs cheaper that interbank loans [See] and ECB funding  $\rightarrow$  [See]
- Maturity shortening before runs  $\rightarrow$  [See table]
- Use Factiva to collect news around runs

### 75 runs, including 29 full runs

## Examples of runs



#### 2 full and 2 partial runs



## Timeline of full runs



#### Year with highest number of runs is 2011



## Observable characteristics before runs



#### Banks facing a run are weaker on observables

|                               | One year              | before run |   | Two years  | before run |
|-------------------------------|-----------------------|------------|---|------------|------------|
|                               | Diff. from Diff. from |            | - | Diff. from | Diff. from |
|                               | mean                  | median     |   | mean       | median     |
| ROA                           | -1.249***             | -0.577***  |   | -0.271     | -0.150**   |
| Net income $/\ \mbox{Assets}$ | -0.014***             | -0.006***  |   | -0.003     | -0.002**   |
| Impaired loans / Equity       | 55.879***             | 52.790***  |   | 22.362     | 11.234*    |
| Equity / Assets               | -0.036***             | -0.033***  |   | -0.032**   | -0.024***  |
| CDS spread                    | 82.180                | 110.245**  |   | 0.041      | 10.584     |
| Short-term credit rating      | -0.424***             | -0.474**   |   | -0.320**   | -0.118     |



■ H1: High- and low-quality banks are equally likely to lose access to wholesale funding in times of stress



- H1: High- and low-quality banks are equally likely to lose access to wholesale funding in times of stress
- Base regression

$$\Delta ROA_{it} = \beta_0 \mathbb{1} \{ t - 1 \le \tau_{Run_i} < t \} + \beta_1 \mathsf{Size}_{i,t-1} + \beta_2 \mathsf{Controls}_{i,t-1} + \beta_3 \mathsf{Controls}_{c,t-1} + FE_c + FE_t + \varepsilon_{i,t},$$

- $\Delta ROA_{it} = ROA_{it} ROA_{it-1}$
- $\beta_0$  coefficient of interest





#### Facing a run predicts a decrease in ROA

|                                 | Bas           | seline                          | Share CD                        | Crisis                          |  |
|---------------------------------|---------------|---------------------------------|---------------------------------|---------------------------------|--|
| Run                             | -0.341**      | -0.508***                       | -0.874***                       | -0.610***                       |  |
| $Size_{t-1}$                    | (0.155)       | -0.018                          | -0.004                          | -0.017                          |  |
| $ROA_{t-1}$                     |               | (0.025)<br>-0.713***<br>(0.038) | (0.025)<br>-0.717***<br>(0.037) | (0.025)<br>-0.717***<br>(0.038) |  |
| Impaired / Loans $_{t-1}$       |               | -0.025***                       | -0.026***                       | -0.026***                       |  |
| GDP growth                      |               | (0.009)<br>38.957***<br>(4.969) | (0.009)<br>37.561***<br>(4.955) | (0.009)<br>38.732***<br>(4.954) |  |
| Run * Share $CD \in [4\%, 9\%]$ |               | (4.909)                         | 0.372                           | (4.554)                         |  |
| $Run * Share \; CD \geq 9\%$    |               |                                 | (0.407)<br>0.351<br>(0.302)     |                                 |  |
| Run * Crisis                    |               |                                 | ()                              | 0.133<br>(0.192)                |  |
| Adj. $R^2$<br>N. Obs.           | -0.001<br>948 | 0.407<br>684                    | 0.415<br>684                    | 0.411<br>684                    |  |

Dependent variable:  $\Delta ROA = ROA_t - ROA_{t-1}$ 

## Endogeneity concerns



#### Reverse causality

Can runs *cause* decreases in ROA?

## Endogeneity concerns



#### Reverse causality

Can runs *cause* decreases in ROA?

#### Three solutions

- Use changes in impaired loans as dependent variable  $\rightarrow$  [See results]
- Interact Run dummy with share of CD funding  $\rightarrow$  [See results]
- Banks do not downsize significantly  $\rightarrow$  No fire sales [See results]



#### Predictability extends to longer-term outcomes

 $\blacksquare$   $\Delta ROA$  and impaired loans at 2-year horizon



#### Predictability extends to longer-term outcomes

 $\blacksquare$   $\Delta ROA$  and impaired loans at 2-year horizon

### Predictability remains with high market stress

■ Interact Run dummy with Crisis dummy (2011-2012) [See results]



#### Predictability extends to longer-term outcomes

 $\blacksquare$   $\Delta ROA$  and impaired loans at 2-year horizon

### Predictability remains with high market stress

■ Interact *Run* dummy with *Crisis* dummy (2011-2012) [See results]

### Runs predict high-frequency market outcomes

 $\blacksquare$  Baseline regression with  $\Delta CDS$  and excess stock return

## Runs predict future market outcomes



#### Facing a run predicts an increase in CDS spread

Predicts negative excess stock return, but insignificant

|                           | 6 months |            | 1        | year       |
|---------------------------|----------|------------|----------|------------|
| Run                       | 36.443** | 49.033***  | 43.824*  | 61.896**   |
|                           | (15.748) | (17.577)   | (25.510) | (28.891)   |
| $Size_{t-1}$              |          | -0.707     |          | -1.680     |
|                           |          | (0.901)    |          | (1.770)    |
| $ROA_{t-1}$               |          | -2.354     |          | 3.948      |
|                           |          | (1.552)    |          | (2.756)    |
| Impaired / Loans $_{t-1}$ |          | -2.041**   |          | -2.410**   |
|                           |          | (0.787)    |          | (1.180)    |
| GDP growth                |          | -1214.823* |          | -2187.64   |
|                           |          | (650.329)  |          | (1437.262) |
| Adj. $R^2$                | 0.570    | 0.585      | 0.563    | 0.573      |
| N. Obs.                   | 2,099    | 956        | 1,937    | 956        |

 $\Delta$  CDS spread



**H2:** When runs occur, cross-sectional reallocation is random.



- **H2:** When runs occur, cross-sectional reallocation is random.
- Issuance in excess of the market

$$E_{it} = \left[ \log (CD_{it}) - \log (CD_{i,t-1}) \right] - \left[ \log (CD_{mt}) - \log (CD_{m,t-1}) \right]$$

- $CD_{it}$ : Outstanding amount by i in month t
- $CD_{mt}$ : Aggregate size of CD market in month t



- **H2:** When runs occur, cross-sectional reallocation is random.
- Issuance in excess of the market

$$E_{it} = \left[\log (CD_{it}) - \log (CD_{i,t-1})\right] - \left[\log (CD_{mt}) - \log (CD_{m,t-1})\right]$$

- $CD_{it}$ : Outstanding amount by i in month t
- $CD_{mt}$ : Aggregate size of CD market in month t

### Probit specification

$$\begin{aligned} \Pr\left(I_{it} = 1 | X_t\right) &= \Phi\left(\beta_0 \Delta ROA_{it} + \beta_1 \mathsf{Controls}_{i,t-1} + \beta_2 \mathsf{Controls}_{c,t-1} + FE_c + FE_m\right) \end{aligned}$$

•  $I_{it} = 1$  if  $E_{it}$  above median or 75th percentile



#### Banks increasing ROA increase relative CD funding

• ... Regardless of whether market is stressed

Dependent variable: Prob. of CD issuance in excess of the market

|              | Above me            | edian | Above 75           | th percentile |
|--------------|---------------------|-------|--------------------|---------------|
| $\Delta$ ROA | 0.024***<br>(0.005) |       | 0.031**<br>(0.014) |               |
| N. Obs.      | 10,979              |       | 10,979             |               |

## Reallocation in times of stress



Run Index

$$RunIndex_t = \frac{\sum_i R_{it}}{CD_{mt}},$$

- $R_{it}$ : Euro amount of run by i at t.
- $CD_{mt}$ : Aggregate CD market size at t
- Computed at monthly frequency  $\rightarrow$  [See index]

## Reallocation in times of stress



Run Index

$$RunIndex_t = \frac{\sum_i R_{it}}{CD_{mt}},$$

- $R_{it}$ : Euro amount of run by i at t.
- $CD_{mt}$ : Aggregate CD market size at t
- Computed at monthly frequency  $\rightarrow$  [See index]

### • Interact $\Delta ROA$ with quantiles of Run Index

- $\blacksquare$  If effect magnified  $\rightarrow$  Accelerated reallocation
- $\blacksquare$  If effect disappears  $\rightarrow$  Suggests contagion

## Reallocation in times of stress



### Reallocation magnified when market stress is high

Increasing in quantiles of the Run Index

|                                           | Above median |           | Above 75 | Above 75th percentile |  |  |
|-------------------------------------------|--------------|-----------|----------|-----------------------|--|--|
|                                           |              |           |          |                       |  |  |
| $\Delta$ ROA                              | 0.024***     | 0.018**   | 0.031**  | 0.016***              |  |  |
|                                           | (0.005)      | (0.009)   | (0.014)  | (0.006)               |  |  |
| $\Delta$ ROA $^*$ Run Index in Quartile 2 |              | -0.003    |          | 0.008                 |  |  |
|                                           |              | (0.016)   |          | (0.006)               |  |  |
| $\Delta$ ROA $^*$ Run Index in Quartile 3 |              | 0.033**** |          | 0.039                 |  |  |
|                                           |              | (0.012)   |          | (0.033)               |  |  |
| $\Delta$ ROA * Run Index in Quartile 4    |              | 0.048**   |          | 0.030**               |  |  |
| (                                         |              | (0.020)   |          | (0.015)               |  |  |
|                                           |              | (0.020)   |          | (0.010)               |  |  |
| N. Obs.                                   | 10,979       | 10,979    | 10,979   | 10,979                |  |  |

Dependent variable: Prob. of CD issuance in excess of the market

## Related literature



### Asymmetric information / Adverse selection (Akerlof, 1970)

- In lender-borrower relationships: Stiglitz & Weill (1981)
- In wholesale markets: Heider et al. (2015)

## Related literature



### Asymmetric information / Adverse selection (Akerlof, 1970)

- In lender-borrower relationships: Stiglitz & Weill (1981)
- In wholesale markets: Heider et al. (2015)

#### Resilience of wholesale markets

- Repo: Gorton & Metrick (2012), Krishnamurthy et al. (2014), Copeland et al. (2014), Boissel et al. (2015), Mancini et al. (2015)
- Counterparty risk vs. liquidity hoarding: Afonso et al. (2011)
  - $\blacksquare \rightarrow$  Focus on asymmetric information is new
  - $\blacksquare \rightarrow$  First study on the European CD market

## Conclusion and implications



#### No evidence that asymmetric information is first-order

- No market freeze
- Runs predict low future performance
- Reallocation not random  $\rightarrow$  From low- to high-quality banks

## Conclusion and implications



#### No evidence that asymmetric information is first-order

- No market freeze
- Runs predict low future performance
- Reallocation not random  $\rightarrow$  From low- to high-quality banks

#### Low asymmetric information can explain market resilience

- Challenges the premise of regulatory liquidity ratio
- However, no account for externalities arising from runs

## Conclusion and implications



#### No evidence that asymmetric information is first-order

- No market freeze
- Runs predict low future performance
- Reallocation not random  $\rightarrow$  From low- to high-quality banks

#### Low asymmetric information can explain market resilience

- Challenges the premise of regulatory liquidity ratio
- However, no account for externalities arising from runs

#### Lender of last resort most likely to benefit weakest banks

- Consistent with empirical evidence (Drechsel et al. JF 2015)
- ... But in contrast with received theory

### The absence of market freeze



- No system-wide drop in volume
  - ... Even when CDS spreads increase



### Average maturity of new issues



#### No system-wide drop in average maturity



# **CD** Yields



Negative spread with the Euribor of same maturity



CD Yields



### • Yields on CDs with initial maturity up to 7 days



## Maturity shortening before runs



- Maturity of new issues shortens before runs
  - Within-issuer variation, with time fixed effects

Dependent variable: Weighted average maturity of new issues

|            | Panel A: Partial | Panel B: Full |
|------------|------------------|---------------|
|            | and full runs    | runs only     |
|            |                  |               |
| $\tau - 1$ | -24.660***       | -29.732***    |
|            | (2.281)          | (4.521)       |
| $\tau - 2$ | -17.278***       | -30.198***    |
|            | (3.939)          | (6.004)       |
| $\tau - 3$ | -12.134*´**      | -14.664***    |
|            | (1.699)          | (4.742)       |
| $\tau - 4$ | -7.628           | -11.610       |
|            | (4.902)          | (7.368)       |
| $\tau - 5$ | -7.506*          | -3.930        |
|            | (3.750)          | (5.243)       |
| $\tau - 6$ | -0.689           | 15.504***     |
|            | (4.132)          | (3.858)       |
| Adj. $R^2$ | 0.166            | 0.165         |
| N. Obs.    | 11,420           | 11,420        |



#### Facing a run predicts an increase in impaired loans

Dependent variable:  $\Delta$  Impaired loans / Loans

|                                    | Ba           | seline                | Share CD                      | Crisis                       |
|------------------------------------|--------------|-----------------------|-------------------------------|------------------------------|
| Run                                | 0.582***     | 0.507***              | 0.640***                      | 0.612***                     |
| $Size_{t-1}$                       | (0.139)      | -0.038                | (0.177)<br>-0.042*<br>(0.025) | (0.151)<br>-0.040<br>(0.025) |
| $ROA_{t-1}$                        |              | -0.011                | -0.010                        | -0.007                       |
| Impaired / $Loans_{t-1}$           |              | -0.017*               | -0.017*                       | -0.017*                      |
| GDP growth                         |              | -24.918***<br>(5.044) | -24.463***<br>(5.068)         | -24.706***<br>(5.031)        |
| $Run * Share \; CD \in [4\%, 9\%]$ |              | (5.044)               | -0.490                        | (5.051)                      |
| $Run * Share \; CD \geq 9\%$       |              |                       | -0.233                        |                              |
| Run * Crisis                       |              |                       | (0.300)                       | -0.052<br>(0.093)            |
| Adj. $R^2$<br>N. Obs.              | 0.100<br>676 | 0.140<br>675          | 0.140<br>675                  | 0.145<br>675                 |

## Endogeneity checks



#### Effect not magnified for banks with large CD exposure

|                                    | Baseline      |              | Share CD                        | Crisis                          |
|------------------------------------|---------------|--------------|---------------------------------|---------------------------------|
| Run                                | -0.341**      | -0.508***    | -0.874***                       | -0.610***                       |
| $Size_{t-1}$                       | (0.155)       | -0.018       | -0.004                          | -0.017                          |
| $ROA_{t-1}$                        |               | -0.713***    | -0.717***                       | -0.717***                       |
| Impaired / $Loans_{t-1}$           |               | -0.025***    | -0.026***                       | -0.026***                       |
| GDP growth                         |               | 38.957***    | (0.009)<br>37.561***<br>(4.055) | (0.009)<br>38.732***<br>(4.054) |
| $Run * Share \; CD \in [4\%, 9\%]$ |               | (4.909)      | 0.372                           | (4.954)                         |
| $Run * Share \; CD \geq 9\%$       |               |              | 0.351                           |                                 |
| Run * Crisis                       |               |              | (0.302)                         | 0.133<br>(0.192)                |
| Adj. $R^2$<br>N. Obs.              | -0.001<br>948 | 0.407<br>684 | 0.415<br>684                    | 0.411<br>684                    |

Dependent variable:  $\Delta ROA = ROA_t - ROA_{t-1}$ 

## Endogeneity checks



#### Facing a run does not predict a decrease in size

Dependent variable:  $\Delta$  Size

|                                    | Bas          | eline                         | Share CD                      | Crisis                        |
|------------------------------------|--------------|-------------------------------|-------------------------------|-------------------------------|
| Run                                | -0.039       | -0.014                        | -0.008                        | -0.019                        |
| $Size_{t-1}$                       | (0.035)      | -0.005**                      | -0.005**                      | -0.005**                      |
| $ROA_{t-1}$                        |              | (0.003)<br>0.008**<br>(0.003) | (0.002)<br>0.008**<br>(0.003) | (0.002)<br>0.008**<br>(0.003) |
| Impaired / Loans $_{t-1}$          |              | -0.000                        | -0.000                        | -0.000                        |
| GDP growth                         |              | (0.001)<br>0.028<br>(0.497)   | (0.001)<br>0.054<br>(0.500)   | (0.001)<br>0.014<br>(0.497)   |
| $Run * Share \; CD \in [4\%, 9\%]$ |              | (0.157)                       | -0.009                        | (0.151)                       |
| Run $\ast$ Share CD $\geq 9\%$     |              |                               | (0.041)<br>-0.017<br>(0.030)  |                               |
| Run * Crisis                       |              |                               | (0.000)                       | 0.008<br>(0.007)              |
| Adj. $R^2$<br>N. Obs.              | 0.031<br>950 | 0.197<br>685                  | 0.195<br>685                  | 0.198<br>685                  |



#### Predictability remains when market stress is high

|                                 | Baseline      |                                  | Share CD                         | Crisis                             |
|---------------------------------|---------------|----------------------------------|----------------------------------|------------------------------------|
| Run                             | -0.341**      | -0.508***                        | -0.874***                        | -0.610***                          |
| $Size_{t-1}$                    | (0.155)       | -0.018                           | -0.004                           | -0.017<br>(0.025)                  |
| $ROA_{t-1}$                     |               | -0.713***<br>(0.038)             | -0.717***<br>(0.037)             | -0.717***<br>(0.038)               |
| Impaired / $Loans_{t-1}$        |               | -0.025***<br>(0.009)             | -0.026***<br>(0.009)             | -0.026***<br>(0.009)               |
| GDP growth                      |               | 38.957* <sup>**</sup><br>(4.969) | 37.561* <sup>**</sup><br>(4.955) | 38.732* <sup>**</sup> *<br>(4.954) |
| Run * Share $CD \in [4\%, 9\%]$ |               | . ,                              | 0.372<br>(0.407)                 | . ,                                |
| Run * Share CD $\ge 9\%$        |               |                                  | 0.351<br>(0.302)                 |                                    |
| Run * Crisis                    |               |                                  |                                  | 0.133<br>(0.192)                   |
| Adj. $R^2$<br>N. Obs.           | -0.001<br>948 | 0.407<br>684                     | 0.415<br>684                     | 0.411<br>684                       |

Dependent variable:  $\Delta ROA = ROA_t - ROA_{t-1}$ 

# Run Index



#### Captures number and magnitude of runs



