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Abstract

This paper argues that the cross-sectional approach to durations
is essential to understand nominal rigidity because this captures the
fact that price-spells are generated by �rms�price-setting behavior.
Since the distribution of durations is dominated by a proliferation
of short contracts, the cross-sectional measure corrects for this by
length-biased sampling. Modelling the price-spell durations in this
way enables us to see how Taylor, Calvo and their generalizations
relate to each other, and enable us to compare price-setting behavior
for a given distribution of durations. We also show how the micro-
data can be directly related to the macroeconomic pricing models in
this setting.
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1 Introduction

Dynamic pricing and wage-setting models have become central to macro-
economic modelling in the new neoclassical synthesis approach. It has be-
come apparent that di¤erent models of pricing have di¤erent implications for
matters such as the persistence of output, prices and in�ation to monetary
shocks. Di¤erent models of wage or price setting imply di¤erent distribu-
tions of durations of price-spells (throughout this paper, we will use "price"
as a shorthand for "wage and price"). In this paper we focus on the class
of time or duration dependent models of pricing, such as Calvo and Taylor,
rather than state-dependent models (Dotsey et al 1999, John and Wolman
2008). We formulate a uni�ed framework for consistently understanding and
comparing these models. We start from the idea of modelling the class of
all steady state distributions of durations across a given population (in this
case, the �rms that set prices). In steady state there are four equivalent ways
of describing this. First, there is the distribution of durations: this treats
each price-spell as an individual element in the population and ignores the
fact that price-spells are generated by �rms (and hence there maybe links
between the individual price spells). Second, there is the cross-sectional dis-
tribution of ages: at a point in time, how long it has been since the current
price-spell began. This is like the population census. Third, we can look at
the distribution in terms of hazard rates or survival probabilities: from the
cross-section of ages, the probability of progressing from one age to the next
one. Lastly, we can look at the cross-section of completed price-spells (life-
times): this corresponds to the average completed price-spell across �rms and
hence in this context we call it the Distribution across �rms (DAF ). The
main innovation of the paper is to develop a transparent framework that
allows us to move between these concepts. The �rst three concepts (distrib-
ution of durations, cross-section of ages and hazard rates) are of course very
well understood in statistics, being basic tools in demography, evolutionary
biology and elsewhere. The fourth concept, the cross-sectional distribution
of completed durations is more novel. However, as I argue, this concept is
essential if we are to answer questions such as what is the average price-spell
across �rms and to apply these concepts to understand and compare di¤erent
models of pricing.
Firms set prices, and if we are to measure nominal rigidity in a meaningful

way, we must focus on the behavior of �rms. This is a very di¤erent concept
form the average length of a price-spell, a measure that is frequently used
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(see for example Bils and Klenow 2004, Klenow and Kristov 2008, Nakamura
and Steinsson 2008). The empirical evidence shows that there is a very
wide and skewed distribution of price-spell durations, with many short price
spells. Taking the average over price-spells gives an excessive weight to short
durations and an underestimate of the real degree of nominal rigidity in an
economy, as argued by Baharad and Eden (2004), Ho¤man and Kurz-Kim
(2006), Dias et al (2007). The cross-sectional approach is a form of length-
biased sampling, which weights price-spells in proportion to their duration.
This enables us to focus on the behavior of the �rms which are generating the
price-spells, and use the information that sequences of price-spells are linked
because they are generated by the same �rms over time. The average length
of price-spell for the typical �rm will have a far higher mean duration than
the mean across price-spells. Furthermore, the mean cross-section duration
gives the same value as the measure proposed by Baharad and Eden (2004).
In the case of the French data, the mean duration of a price spell is 5:3
months, whereas the mean across �rms is 14 months (Baudry et al 2007,
Dixon and LeBihan 2009). With this framework, we can understand how
frequency based measures of nominal rigidity (which focus on the proportion
of prices changing per period) can yield quite short mean durations (around
5 months) in a way that is perfectly consistent with the average across �rms
being much longer (around 12 months or more). Of course, these are two
measures of the same thing but from a di¤erent perspective. In this paper I
argue that the cross-sectional approach is the most revealing in terms of �rm
behavior generating the price-spells and hence the degree of nominal rigidity.
Each of these ways of looking at the class of all steady-state distributions

has a natural application to modelling price and wage setting. In the Gen-
eralized Taylor Economy (GTE) (see Kara and Dixon 2005, Taylor 1993,
Coenen et al 2007), there are many sectors with di¤erent price-spell lengths,
and within each sector there is a simple Taylor process. The simple Taylor
economy where all contract lengths are the same is a special case of the GTE.
In the Calvo approach, we have a reset probability which may be constant
(as in the classical Calvo model) or duration dependent (Wolman 1999, Mash
2003 and 2004, Guerrieri 2006, Sheedy 2007, Paustian and von Hagen 2008).
We show that the Calvo model with duration-dependent reset probabilities
(denoted as the Generalized Calvo model GC) is coextensive with the set
of all steady state distributions: each possible steady state age distribution
has exactly one GC and one GTE which corresponds to it. Hence, using
the framework, we are able to compare the di¤erent models of pricing for
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a given distribution of durations of price spells.. This enables us to isolate
the precise e¤ect of the pricing model as opposed to the di¤erences in the
distribution of durations .
The framework in this paper also allows us to directly link microdata

to models of wage and price setting. We can take a given distribution of
price-spells and model it as either a GTE or a GC. We take the Bils-Klenow
data set and interpret it as a Multiple Calvo (MC) economy: in each sector
there is a sector-speci�c calvo reset probability (as in Carvalho 2006). We
then generate the corresponding Hazard rate and DAF which enables us
to take the three pricing models GTE; GC and MC, and compare them for
exactly the same distribution of price-spells in a simple model economy. This
enables us to highlight the di¤erences in the pricing model controlling for the
distribution of price-spells. What we �nd is that for this distribution at least,
the three pricing models are quite close in terms of the impulse-response
functions they generate in response to a monetary shock. In particular,
the GC and MC are quite similar. However, there can be di¤erences: in
the particular example we �nd that the GTE can result in a hump shaped
impulse-response for in�ation, whilst the GC and MC do not.
In section 2 we review the facts about the steady state distribution of

durations, ages and hazard rates. We then introduce the new concept of
the distribution of durations across �rms and show how all four concepts
are related by simple formulae which are spreadsheet friendly. In section 3,
we discuss the di¤erent measures of nominal rigidity arising form di¤erent
distribution and how they relate to empirical work. In section 4, we link the
concepts to di¤erent models of pricing into a general framework and see how
pricing models perform in a simple macroeconomy.

2 Steady State Distributions of Durations across
Firms.

We will consider the steady-state demographics of price-spells in terms of
their durations. The lifetime of a price-spell is how long it lasts from its
start to its �nish, a completed duration. There is a continuum agents f (we
will call them �rms here), which set prices (or wages), represented by the unit
interval f 2 [0; 1] : Time is discrete and in�nite t 2 Z+ = f0; 1; 2:::1g :A
price event (or price-observation) is a price set by a particular �rm at a
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particular time: pft. A price spell is a duration, a sequence of consecutive
periods that have the same price. For every price event pair ft; fg we can
assign an integer d(t; f) which is the price spell duration of which the price
event is part of. Furthermore, we can de�ne the subset of reset price events,
when �rms set a new price:

R = f(t; f) : pft 6= pft�1g � [0; 1]� Z+ (1)

The distribution of durations is derived from the set R. Let the longest
duration1 be F <1: Then we can de�ne F subsets of R

R(i) = f(t; f) 2 R : d(t; f) = ig

Thus R(i) gives us the subset of durations of length i. The distribution of
durations is simply the proportions of all durations having length i = 1:::F :

�d =
�
�di
	F
i=1
2 �F�1

In steady-state this simpli�es, since the distribution of durations of new price-
spells is the same each period, we can take any "representative" t > F and
de�ne

�di = �
d
i (t) =

R 1
0
I((f; t) 2 R(i))dfR 1
0
I((f; t) 2 R)df

Where I is an index function that takes the value 1 if (at our chosen t) price
event (f; t) is in the relevant set, 0 otherwise. In steady-state the distribution
of durations is the same as the distribution of durations taken over the subset
of reset prices (new price spells).

2.1 Ages.

The age of a price-spell at time t is de�ned as the period of time that has
elapsed since the price spell started. Formally, we can take a price event
pft and de�ne the age as:

A (f; t) = 1 + min
s
[t� s]

s:t (f; s) 2 R

s � t

1The �niteness of F is merely for convenience and has no importance since it can be
set arbitrarily large.
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Since we have integer time, we adopt the convention that the minimum age
is 1. Hence, for each (t; f) we have an associated measure of age a(f; t).
Let us de�ne the subset of �rms at time t that are of age A = j.

j(t) = ff 2 [0; 1] : A(f; t) = jg

Then the proportion of �rms aged j at t is for all t > F

�Aj = �
A
j (t) =

Z 1

0

I ((f; t) 2 j(t)) :df

The steady-state distribution of ages is monotonic: you cannot have more
older people than younger, since to become old you must �rst be young.
Hence the set of all possible steady state age distributions is given by:

�F�1
M =

�
�A 2 �F�1 : �Aj � 0; �Aj � �Aj+1

	
where the subscript M refers to (weak) monotonicity.

2.2 Hazard Rate.

An alternative way of looking at the steady state distribution of durations
and the cross-section of ages is in terms of the hazard rate. The hazard rate
at a particular age is the proportion of contracts at age i which do not last
any longer (contracts which end at age i, people who die at age i). Hence the
hazard rate is de�ned in terms of the age distribution: given the distribution
of ages in steady-state �A 2 �F�1

M ; the corresponding vector of hazard rates2

! 2 [0; 1]F�1 is given by3:

!i =
�Ai � �Ai+1

�Ai
; i = 1::: (F � 1) (2)

2Since the maximum length is F; without loss of genersality we set !F = 1. If !i = 1
for some i < F , then i is the maximum duration and subsequent hazard rates become
irrelevant. This leads to trivial non-uniqueness. We therefore de�ne F as the shortest
duration with a reset probability of 1:

3The Hazard rate can also be de�ned in terms of the distribution of durations.

!i =
�diP
j�i �

d
j

=

i � 
i+1


i

For the relationship between continouous and discrete time used here see Kiefer (1988)
and Fougere et al (2007).
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Whilst it is easy to allow for an in�nite series of reset probabilities less than
one, we will mainly deal with the �nite case where there is a �nal reset
probability of one after F periods, although in later sections we will look at
cases with in�nite F .
Corresponding to the idea of a hazard rate is that of the survival proba-

bility, the probability at birth that the price survives for at least i periods,
with 
1 = 1 and for i > 1


i = �
i�1
�=1(1� !�)

and we de�ne the sum of survival probabilities �
 and its reciprocal �! :

�
 =
PF

i=1
i �! = ��1


Clearly, we can invert (2), hence:

Observation 1 given ! 2 [0; 1]F�1 ; there exists a unique corresponding age
pro�le �A 2 �F�1

M given by:

�Ai = �!
i i = 1:::F .

Given the �ow of new contracts �!, the proportion surviving to age i
is 
i : �! = ��1
 ensures adding up. From the de�nition of hazard rates
and Observation 1 we can move from an age distribution �s 2 �F�1

M to the
hazard pro�le and vice versa.4

Observation 2 given ! 2 [0; 1]F�1 ; there exists a unique corresponding
distribution of durations �d 2 �F�1 given by:

�di = 
i!i i = 1:::F .

The proportion of price-spells of duration i is the proportion surviving i
periods and no longer. Hence there is a unique 1 � 1 relationship between
elements of the set of possible duration distributions and the set of possible
hazard pro�les.

observation 3. For any �d 2 �F�1
M , the corresponding cross-section of ages

�A 2 �F�1
M is given by

�Ai =
�!

!i
�di

and vice-versa.
4 This relationship is one of the building blocks of Life Tables (Chiang 1984), which

are put to a variety of uses by demographers, actuaries and biologists.
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2.3 The cross-sectional distribution of Completed Price-
spells across Firms.

The steady-state age distribution �A 2 �F�1
M , distribution of durations �d 2

�F�1 or hazard pro�le ! 2 [0; 1]F�1 are di¤erent ways of looking at the
same object: a panel of price events. Each row of the panel is a trajectory
of prices corresponding to a particular �rm. Each column is a cross-section
of all of the prices set by �rms at a point in time. We now introduce a
fourth distribution: it is a cross-sectional distribution of completed durations
or lifetimes across �rms � 2 �F�1. In e¤ect, we take a representative t, and
for each �rm we see the completed price-spell duration at that time d(f; t):
If we de�ne

R(i; t) = ff 2 [0; 1] : d(t; f) = ig
then the proportion of �rms at time t with a completed duration of i; �i is
de�ned by:

�i = �i (t) =

Z 1

0

I ((f; t) 2 R(i; t)) df

Under the steady-state assumption �i is constant over time, and hence we
omit the time indicator.
We can move from the distribution of ages to the distribution of completed

contract lengths across �rms:

Proposition 1 Consider a steady-state age distribution �A 2 �F�1
M . There

exists a unique distribution of lifetimes across �rms � 2 �F�1 which corre-
sponds to �A, where

�1 = �A1 � �A2 (3)

�i = i
�
�Ai � �Ai+1

�
::

�F = F�AF

All proofs are in the appendix. Since there is a 1-1 mapping from age to
lifetimes, we can compute the distribution of lifetimes from ages:

Corollary 1 Given a distribution of steady-state completed lifetimes across
�rms, � 2 �F�1, there exists a unique �A 2 �F�1

M corresponding to �

�Aj =

FX
i=j

�i
i

j = 1:::F (4)
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The intuition behind Proposition 1 and the Corollary is clear. In a steady
state, each period must look the same in terms of the distribution of ages
This implies that if we look at the i period contracts, a proportion of i�1 must
be renewed each period. Thus if we have 10 period contracts, 10% of these
must come up for renewal each period. This implies that the proportion of
contracts coming up for renewal each period (which have age 1) is:

�A1 =

1X
i=1

�i
i

The proportion of contracts aged 2 is the set of contracts that were reset last
period (�s1), less the ones that only last one periods (�1) and so on. The set
of all possible steady state distributions of durations can be characterized
either by the set of all possible age distributions: �A 2 �F�1

M or the set of
all possible lifetime distributions across �rms � 2 �F�1: They are just two
di¤erent ways of looking at the same thing.
Proposition 1 and its corollary show that there is an exhaustive and 1-1

relationship between steady state age distributions and lifetime distributions.
We can go from any age distribution and �nd the corresponding age distrib-
ution and vice versa. Now, since we know that there is also a 1-1 relation
between Hazard rates and age distributions, we can also see that there will
be a 1-1 relationship between completed contract lifetimes and hazard rates.
First, we can ask what distribution of completed contract durations corre-
sponds to a given vector of hazard rates. We can simply take observation 1 to
transform the hazards into the age distribution, and then apply Proposition
1.

Corollary 2 let ! 2 [0; 1]F�1 : The distribution of lifetimes across �rms
corresponding to ! is:

�i = �!:i:!i:
i: i = 1:::F (5)

The �ow of new contracts is �s1 = �! each period. To survive for exactly
i periods, you have to survive to period i which happens with probability 
i,
and then start a new contract which happens with probability !i. Hence
from a single cohort �!:!i:
i will have contracts that last for exactly i periods.
We then sum over the i cohorts (to include all of the contracts which are in the
various stages moving towards the their �nal period i) to get the expression.
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We can also consider the reverse question: for a given distribution of
completed contract lengths �;what is the corresponding pro�le of hazard
rates? From Corollary 2, note that (5) is a recursive structure relating �i
and !i: �i only depends on the values of !s for s � i.

Corollary 3 Consider a distribution of contract lengths across �rms given
by � 2 �F�1. The corresponding hazard pro�le that will generate
this distribution in steady state is given by ! 2 [0; 1]F�1 where:

!i =
�i
i

 
FX
j=i

aj
j

!�1

Corollary 4. For completeness, we can also ask for a given cross-section
DAF � 2 �F�1; what is the corresponding distribution of durations
�d 2 �F�1 is:

�di =
�i
i:�!

(6)

This follows directly form the comparison of (5) and observation 2. Clearly,
by de�nition, the distribution of durations is the same as the distribution
across �rms resetting prices (new price-spells). The more frequent price
setters (shorter price-spells) have a higher representation relative to longer
price-spells. Note that the rhs denominator is the product of the contract
length and the proportion of �rms resetting price. For the values of i < �!�1

, the share of the duration i is greater across contracts than �rms: for larger
i > �!�1 the share across contracts is less than the share across �rms.

2.4 A Comparison of the mean duration measures.

How revealing are these measures in helping us to understand and measure
nominal rigidity? Let us start by de�ning the three means corresponding to
the three distributions:

Mean duration

�d =

FX
i=1

i:�di = �!
�1
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Mean age

�A =

FX
i=1

i:�Ai

Mean duration across �rms.

�T =
FX
i=1

i:�i

There are a few simple observations that can be made. First, if we
compare the two cross-sectional measures �A and �T , we have length-biased
sampling: we are more likely to observe longer price-spells5 than in the du-
ration measure �d: The reason for this is that in duration measure, we are
restricting our measure to look at the start of price-spells: �di is de�ned over
the reset subset R of all price-events. In terms of the cross-section, �d is a
conditional mean: we are only looking at the subset of �rms who reset their
price. In the two cross-sectional measures, we are in e¤ect selecting over all
price events in the cross-section. Second, if we look at the age distribution,
there is an interruption bias: the age represents an interrupted duration, only
a part of the completed lifetime of the price-spell, A(f; t) � d(f; t): Hence
we have the two inequalities:

�d � �T
�A � �T

where the second inequality can be made more precise: �A = �T only if F = 1;
otherwise �A < �T . Furthermore, since F is the longest contract for which
�dF > 0, we have

�d = �T if �dF = 1
�d < �T if �dF < 1

since there can be no length-bias if all price-spells have the same duration
F . If we turn to the mean age and the mean duration, there is no general

5If we choose a point in time at random, the probability of a price-spell being observed
is proportional to its length: a 10 period spell is 10 times more likely to be observed than
a 1 period contract.
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inequality: we can have �A > �d and �A < �d depending on whether the inter-
ruption bias is larger than the length bias. Clearly, from the above we have
some special cases:

�A = �T = �d if F = 1
�A < �T = �d if F > 1 and �dF = 1:

Now, for a given mean duration �d there are many distribution of dura-
tions

�
�di
	
that generate that mean: and each such distribution will have a

corresponding DAF f�ig and mean across �rms �T : Since we know that the
mean duration is the reciprocal of the proportion of �rms resetting prices
�d = �!�1, we can de�ne the mapping H (�!) : [0; 1]! �F�1

H (�!) =

(
� 2 �F�1 :

FX
i=1

�i
i
= �!

)

H (�!) is the set of all DAFs which are consistent with a given mean duration
of price-spells �d expressed in terms of the corresponding proportion of �rms
resetting prices �!. Clearly, since the maximum duration is F , we have �! �
F�1 so thatH is non-empty6. SinceH (�!) is de�ned by a linear restriction on
the sector shares �, H (�!) � �F�2 and is closed and bounded. We can then
ask what is the minimum and the maximum mean across �rms consistent
with a given �d.
The average length of price-spells across �rms is �T (�) =

PF
i=1 i:�i:

Mathematically, we know that since H (�!) is non-empty, closed and bounded
and �T (�) is continuous, both a maximum and a minimum will exist. Turn-
ing to the minimization problem �rst: we have:

min �T (�) s:t: � 2 H (�!) (7)

Proposition 2 Let �min 2 �F�1 solve (7) to give the shortest average con-
tract length �Tmin.

(a) No more than two sectors i have values greater than zero
(b) If there are two sectors �i > 0, �j > 0 then will be consecutive

integers (ji� jj = 1).
6If �! < F�1, then even if all price-spells were at the maximum duration F , there would

be too many �rms resetting prices.
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(c) There is one solution i¤ �!�1 = k 2 Z+. In this case, �k = 1.
(d) The minimum is �Tmin = �!�1 = �d.

We can also ask what is the maximum average contract length consistent
with a proportion of resetters �!:

max �T (�) s:t: � 2 H (�!) (8)

Proposition 3 Let �max 2 �F�1 solve (8). Given the longest contract
duration F , the distribution of contracts that maximizes the average
length of contract subject to a given proportion �! of �rms resetting
price

�maxF =
F

F � 1 (1� �!)

�max1 =
F

F � 1 �! �
1

F � 1
with �maxi = 0 for i = 2:::F �1: The maximum average contract length
is

�Tmax = F (1� �!) + 1

To understand Propositions 2 and 3, we just need to think of what is
generating the mean duration �d and the proportion of �rms changing price
each period �!. There is the unit interval of �rms, divided into proportions
with di¤erent price-spell durations i = 1:::F . Firms with price-spell lengths
i will set prices once every i�1 periods: the longer the price-spell, the more
infrequently the �rm will visit the price-setters�club. Hence, we can have the
same proportion of �rms re-setting price (and hence same mean duration)
and increase the mean duration across �rms by more longer price-spells.
The maximum Tmax is reached when we have as many F period contracts
as possible, consistent with �!. In e¤ect, this means we have a mix of 1
period and F period price-spells. The existence of a maximum relies on us
assuming an upper bound F : clearly, as F !1, Tmax !1. The minimum
occurs when all �rms have similar price-spells: if �d happens to be an integer,
then all price-spells have that length and the two distributions are the same:
�d = �.

2.5 Examples.

In this section we provide �ve examples. In the �rst column we state the
rest probabilities (hazard rates) f!ig in the second, in the second and third
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the corresponding cross-sectional distributions of ages
�
�Ai
	
and completed

lifetimes across �rms f�ig, and in the fourth the distribution
�
�di
	
over

durations. In the bottom row we compute the proportion of new contracts
�!, and the means �A; �d; �T :

Example 1.
!1 =

9
10

�A1 =
37
40

�1 =
9
10

�d1 =
36
37

!2 = 0 �A2 =
1
40

�2 = 0 �d2 = 0
!3 = 0 �A3 =

1
40

�3 = 0 �d3 = 0
!4 = 1 �A4 =

1
40

�4 =
1
10

�d4 =
1
37

�! = 37
40

�A = 23
20

�T = 13
10

�d = 40
37

In this example, there are two lengths of price spell: 90% of �rms
have 1 period spells and 10% 4 periods. Note that7 �d = 1:08 < �A =
1:15 < �T = 1:3: because of the proliferation of short contracts, the
mean duration even less than the average age across �rms (in all the
other examples, �d > �A). In this case the length bias outweighs the
interruption bias.

Example 2.
!1 =

1
4
�s1 =

32
71

�1 =
8
71

�d1 =
1
4

!2 =
1
2
�s2 =

24
71

�2 =
24
71

�d2 =
3
8

!3 =
3
4
�s3 =

12
71

�3 =
27
71

�d3 =
27
96

!4 = 1 �s4 =
3
71

�4 =
12
71

�d4 =
3
32

�! = 32
71

�s = 128
71

�T = 185
71

�d = 71
32

This has a rising hazard over four periods. The shares across �rms
and contracts both peak at period 3 with a small 4-period share. Here
we have �A = 1:80 < �d = 2:22 < �T = 2:61:

Example 3: Simple Taylor 4.

!1 = 0 �s1 =
1
4
�1 = �

d
1 = 0

!2 = 0 �s2 =
1
4
�2 = �

d
2 = 0

!3 = 0 �s3 =
1
4
�3 = �

d
3 = 0

!4 = 1 �s4 =
1
4
�4 = �

d
4 = 1

�! = 1
4

�A = 5
2

�T = �d = 4

A simple lesson can be derived from example 4. When completed con-
tracts have the same length, the distribution across contracts equals the

7decimals are to 2 places.
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distribution across �rms and hence has the same mean as in illustration
of Proposition 2.

Example 4: Taylor�s US Economy. We can now consider an example
starting from an empirical distribution of completed contract lengths
we can derive the corresponding GC. Taylor�s US economy represents
the estimated distribution of completed contract lengths8 (in quarters)
in the third column. We can represent this in terms of the hazards
and the other two distributions (to 2 s.f.), distribution over contracts
and the resultant averages.

!1 = 0:20 �A1 = 0:35 �1 = 0:07 �d1 = 0:20
!2 = 0:34 �A2 = 0:28 �2 = 0:19 �d2 = 0:27
!3 = 0:42 �A3 = 0:18 �3 = 0:23 �d3 = 0:18
!4 = 0:50 �A4 = 0:11 �4 = 0:21 �d4 = 0:15
!5 = 0:57 �A5 = 0:053 �5 = 0:15 �d5 = 0:087
!6 = 0:58 �A6 = 0:023 �6 = 0:08 �d6 = 0:038
!7 = 0:60 �A7 = 0:0095 �7 = 0:04 �d7 = 0:017
!8 = 1 �A8 = 0:0037 �8 = 0:03 �d8 = 0:011
�! = 0:35 �A = 2:4 �T = 3:7 �d = 2:9

It is interesting to note that here, unlike examples 1-3, we can really see
the di¤erence between the distribution of durations and DAF : in the
duration distribution price-spells of length 1 and 2 are really boosted -
we see a lot of shorter contracts. All the other durations are reduced,
and in particular the longer contract lengths are much less common in
the distribution across contracts and across �rms. The resultant mean
duration �d is 77% of the mean across �rms.

Example 5: Simple Calvo The Calvo model most naturally relates to the
hazard rate approach to viewing the steady state distribution of du-
rations. The simple Calvo model has a constant reset probability !
(the hazard rate) in any period that the �rm will be able to review and

8In fact, in Taylor (1993), the ages are estimated but not reported. In Table 2.2 page
48 the second column we believe to be the distribution f�ig although it is reported as�
adi
	
: in the text, it says that "contract lengths in the three to four quarter range appear

to predominate". The third column which is reported as f�ig is monotonic so may be
ages. We have not been able to �nd an interpretation of Table 2.2 which is consistent
with the steady state identities in this paper.
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if so desired reset its price. This reset probability is exogenous and
does not depend on how long the current price has been in place. The
distribution of ages of price-spells is

�Ai = ! (1� !)
s�1 : s = 1:::1

which has mean �A =
P1

i=1 �
A
i :i = !�1. Applying Proposition 1(a)

gives us the steady-state distribution of completed price-spells i across
�rms:

�i = !
2i (1� !)i�1 : i = 1:::1 (9)

which has mean �T = 2!�1� 1 (see Dixon and Kara 2006)9. Note that
for the simple Calvo model, the distribution of ages is the same as the
distribution of durations: from observation 3, since ! = �!, �Ai = �

d
i

i = 1:::1. Hence the interruption and length bias are exactly o¤set.
We illustrate the simple Calvo model with ! = 0:25, to 4 d.p.

!1 = 0:25 �A1 = 0:25 �1 = 0:0625 �d1 = 0:25
!2 = 0:25 �A2 = 0:1875 �2 = 0:09375 �d2 = 0:1875
!3 = 0:25 �A3 = 0:1406 �3 = 0:1055 �d3 = 0:1406
!4 = 0:25 �A4 = 0:1052 �4 = 0:1055 �d4 = 0:1052

!i = 0:25 �Ai = 0:25 (0:75)
i�1 �i = (0:25)

2 i (0:75)i�1 �di = �
A
i

�! = 0:25 �A = 4 �T = 7 �d = 4

3 How to measure price stickiness.

How should we think about nominal rigidity? Much of the recent literature
has focussed on the distribution of durations: there exists a broad range
of econometric and statistical methodology built up to study this (see for
example Lancaster 1992). This has lead to a focus on the frequency of
prices changing in a given period as an estimate of the mean duration: in
e¤ect using �! as a basis for estimating �d. Conceptually, this means taking
the whole population of durations and using the mean as the measure of
price-stickiness. We can see that the standard comparison of the Taylor with
Calvo is to equate the mean duration of price-spells: hence a 4 period Taylor

9Paustian and von Hagen (2008) use the mean age in cross-section to ensure compara-
bility across their di¤erent pricing rules using this measure.
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is equated with a simple Calvo model with a rest probability of ! = 0:25 (see
for example Kiley 2002). Since in most data sets there are a lot of short price
durations, the mean duration estimated from the data seems quite small. As
a ball park, in many micro-data sets derived from CPI data, the proportion
of �rms changing price per month is in the 20-30% range: hence the mean
duration will be around 3-5 months, or 1� 2 quarters.
I want to argue that using the distribution of durations is not a good

way to model what macroeconomists think of as nominal rigidity. To argue
my case, I will make some thought experiments and examples. The �rst
and most important point to make is that nominal rigidity is a result of how
�rms set prices. If we want to look at an economy and evaluate the degree
of nominal rigidity, we would want to look at the behavior of �rms. This
is precisely how the earliest studies of price setting were undertaken: Bearl
and Means (1932), Hall and Hitch (1939);Means (1935), Mills (1927) went to
�rms and asked them how often they changed prices (more recent examples
include Blinder 1991 and 1994, Hall et al 2000). It is the behavior of �rms
in the economy, and their importance in terms of their share in the economy
or CPI that determines nominal rigidity.
Focussing on �rm behavior is essentially a cross-section perspective on

price-spell durations, since at any one time, each extant price-spell is asso-
ciated with one �rm. We can consider the example of a world with two
�rms that last for two periods. One �rm sets its price in both periods (single
period price-spells). The other sets the price for two periods. Now if we take
the �rm based view, we would say that 50% of �rms set 1�period contracts,
and 50% set two period contracts: the average contract is 1:5 periods. That
is the approach taken in this paper. However, if we take the duration-based
approach, we say that in the two periods there were 3 price-spells: two were
1�period, and 1 was 2�periods, so that the average duration is 11

3
.

Let us take this example further: suppose we have an economy where 9
�rms set prices for a year (all on January 1st), but where 1 �rm sets prices
� times per year each of duration ��1. In a given year, there will be 9 + �
price-spells. The averages across price-spells and across �rms will be (in
years):

�d (�) =
9:1 + � :��1

9 + �
=

10

9 + �

�T (�) =
9 + ��1

10
:
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The economy consists of 90% �rms who have rigid prices: 10% of the
economy has more �exible prices. In any plausible economic model, the
behavior of the 90% of �rms is going to dominate: our measure of nominal
rigidity should pick this up. However, we can see that as � gets larger, more
and more short price-spells are thrown up by the 1 �ex price �rm: in the
limit as � ! 1 we have �d (�) ! 0. As price spells in the �exible �rm get
shorter and shorter, they drive the mean duration to zero. This is not a
plausible measure of an economy in which most prices are rigid for the whole
year. The lower limit of �T (�) is 0:9, is more reasonable. The duration based
measure places an equal weight on each price-spell. However, if we want to
understand the behavior of �rms and the resultant behavior of the economy,
we will want to place less weight on shorter spells. This is precisely what
taking the cross-sectional distribution across �rms does.
A second point, made by Baharad and Eden (2004), is that simply taking

an average over price spells will lead to too much weight on shorter spells.
Consider the following example. There is one �rm. It keeps its price
constant for 364 days of the year. On the 365th day it changes its price
� times with each duration ��1 of a day. Now, this is not a steady-state
example. However, we can calculate the mean duration price-spell (in days)
as:

�d (�) =
364 + � :��1

364 + �
=

365

364 + �

Again, the more frenetic the price changes in the last day, the lower the mean
duration: �d goes to zero as � !1. Surely this is not a good measure of the
price-stickiness: the price was constant for nearly all of the year, and what
happens in the last day should not be able to wipe that out. Baharad and
Eden propose a measure of price rigidity in which the duration of the price
spell is weighted according to its duration: longer price spells occupy more
of the time. The measure is the mean across time (or "per price" in their
terminology):

BE(�) =
364

365
(364) +

1

365
��1

In e¤ect, each price-spell is weighted by its duration. We can see that BE
goes to 364 as � ! 1; which is a much more accurate representation of
nominal rigidity than the mean price-spell.
In both of these examples, we can see that to understand nominal rigidity,

we need to place a greater weight on longer price spells. In micro-data sets,
there are typically many short durations: in the CPI data, in some sectors
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most prices change every month (gasoline, tomatoes and airline fares had
70% or more of prices changing per month in Bils and Klenow 2004). Using
the frequency based (or direct measures) of mean duration will lead to a very
misleading picture of the degree of nominal rigidity in the economy due to
the proliferation of short price-spells. The mean duration of a price-spell
is not a good measure of nominal rigidity because it treats each price-spell
equally irrespective of length.
It turns out that both the Baharad and Eden measure BE and the mean

�T are equivalent in steady state10. Let us �rst de�ne the BE measure more
precisely. If we weight each duration in proportion to its length i we have
the weighted distribution

�BEi = �!:i�di

the RHS is multiplied by �! to ensure adding up to unity (since
PF

i=1 i�
d
i =

�!�1): The sum of the weights has to add up for the average:

BE =
FX
i=1

i�BEi =
FX
i=1

i(i�!�di ) =
FX
i=1

i:�i = �T (10)

since from Corollary 4 (6) �i = i�!�di . Hence:

Observation 4. In steady-state BE = �T :

The reason that the two measures are equivalent is that they both weight
the price-spells by their duration. In the cross-sectional DAF this is be-
cause of the length-biased sampling: in the BE measure, it is done directly.
Much of the literature on duration analysis has tried explicitly to eliminate
any length bias: if you want to �nd the average duration of unemployment
across entrants, then looking at the average completed duration of the stock
of unemployed will overestimate it (Carlson and Horrigan 1983 and Lan-
caster 199211). In many applications you have good reason to treat each
duration equally: each unemployment spell is unique and there is no link
between di¤erent unemployment spells.. However, with prices, there is a
panel element: price-spells across time are linked by the fact that they are

10This point is made by Garbriel and Rei¤ (2007).
11"picking an individual from the unemployed stock and observing his completed du-

ration is non-randomly sampling the duration of entrants...We have in fact what is often
called length-biased sampling of complete durations in which the probability that a spell
will be sampled is proportional to its length" Lancaster (1992), p.95.

19



set by the same �rm. Focussing on the distribution of durations is in e¤ect
ignoring the panel structure and the fact that it is �rms which are generating
the price-spells.
The last, but by no means least, reason that we should look at the cross-

sectional measure is that this also re�ects how �rms and households look at
things. When it sets prices, the �rm�s maximand is the discounted sum
of future pro�ts up to some time T (which may be in�nite). Thus the
weight put on a particular price spell is in a sense "proportionate" to its
duration, notwithstanding the e¤ects of discounting. Since the objective
function is additive across time, a longer duration adds more items into the
summation than a shorter duration. Hence �rms pay attention to the �ow
of pro�ts earned during price-spells roughly proportionate to their duration,
given discounting. An analogous argument can be made for households and
the government.

3.1 Micro data: prices are stickier than we thought.

There are now several studies using micro data: in particular the In�ation
Persistence Network (IPN) across the Eurozone has been particularly com-
prehensive12. These studies adopt a common methodology using monthly
micro CPI data across several countries which includes direct measurements
in addition to the frequency based methodology, in contrast to the US stud-
ies which focus more exclusively on the frequency based estimates (Bils and
Klenow (2004), Klenow and Krystov (2008), Nakamura and Steinsson (2008)
and also Bunn and Ellis (2009) for the UK). Here we will consider Al-
varez and Hernando (2006) for Spain (covering 1994-2003), Veronese et al
(2005) for Italy (covering1996-2003), Baudry et al (2007) for France (cover-
ing 1994-2003). All these studies have data on individual products sold at
individual outlets. They also have trajectories for prices: this is the sequence
of price spells for a product at an individual outlet. We can think of each
trajectory as analogous to the sequence of price contracts for an individual
�rm in the context of this paper. These papers all provide estimates of the
average length of a price spell: both across the population of all price spells
(corresponding to �d ) and also across trajectories, where a mean duration
is calculated for each trajectory and then the average is taken across tra-
jectories (corresponding to TR). Averaging across trajectories is obviously

12See Dhyne et al (2006) for a summary of the IPN�s �ndings.
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related to averaging across �rms, as we do in �T . However, as discussed
in Baharad and Eden (2004) and Dixon and Le Bihan (2009), because of
within trajectory diversity of price-spells, taking an unweighted average of
spell durations along a trajectory will tend to overweight short spells13, so
that TR � �T 14.
There are many detailed empirical issues to do with weighting, censor-

ing and the introduction of the Euro and sales which we can ignore here.
However, we can �nd the direct estimates of the average duration of price
spells (all durations are in months) and averages of trajectories in the three
studies:

� Italy15: �d = 8; TR = 13:

� France16: �d = 5:28; TR = 7:24:

� Spain17: �d = 6:2;TR = 14:7:

In the case of Italy and Spain, averaging over trajectories leads to a con-
siderable increase in mean duration. In the case of France, the trajectories
tend to be much shorter, so this e¤ect is weaker. However, in Dixon and
Le Bihan (2009) we computed �T directly with the same data set and found
that �T = 13:87 which is more in line with Italy and Spain.
Gabriel and Rei¤ (2007) have developed the framework in this paper and

considered the best way to estimate price stickiness. There are potentially
4 di¤erent ways of measuring price-stickiness: estimating the cross-sectional
average age or completed duration, the mean duration using the reciprocal
of the frequency of price-change and the hazard rate. Using a Monte-Carlo
methodology, they �nd that in the absence of censoring and sectoral hetero-
geneity, all four measures are similar and "close" to the true values. However,
13I would like to thank Peter Gabriel and Adam Rei¤ for pointing this out in a comment

on the ECB working paper 676 version of this paper.
14Also, the CPI sampling process leads to switches of outlet and product leading to

incomplete trajectories, a form of panel "attrition".
15Veronese et al (2005), Table A2.
16Baudry et al (2007). Note, the estimate of �d is only for unweigthed data. The

trajectories in the French data only have an average length of 17 months. Hence our TR
is taken to be their �TW .
17Alverez and Hernando (2006). �T is taken from Table 6.1 Panel C. There is no direct

measure of �d using the CPI weights (Panel A.gives the unweighted mean). The value
quoted is derived from the inverse of the reset frequency for each sector aggregated using
the CPI weights.
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with the censoring of data and unobserved heterogeneity, they �nd that the
most robust estimation methodology is the Hazard rate. In particular, the
"frequency" method tends to underestimate the true mean duration: in par-
ticular, the monte carlo studies result in a downward bias in the frequency
estimates of �d. They use micro CPI data from, Hungary 2002-6 and using
the hazard-rate method, they estimate that for this data �d = 9 months and
�T = 16:4 months. Ho¤man and Kurz-Kim (2006) apply the Baharad and
Eden weighting scheme to the German micro-CPI data (1998-2004) and �nd
that whilst �d = 5:3; weighting durations18 by length yields �T = 26:8.
Dias et al (2007) also consider the panel structure of the CPI and PPI

data for Portugal in their estimation procedure. They suggest that for
each trajectory, the price-spells are weighted by the number of spells in that
trajectory (which is equivalent to weighting by the average price-spell in
the trajectory), or the alternative of randomly selecting one price spell from
each trajectory. Whilst these are not exactly equivalent to our length biased
sampling, both mechanisms reduce the relative importance of short-spells.

4 Pricing Models with steady state distribu-
tions of durations across �rms.

Having derived a uni�ed framework for understanding the set of all possible
steady state distributions of durations across �rms, we can now see how
this can be used to understand commonly used models of pricing behavior.
Indeed, we can see how each pricing theory relates to the whole set of possible
steady-state distributions.

4.1 The Generalized Taylor Economy GTE

Using the concept of the Generalized Taylor economy GTE developed in
Dixon and Kara (2005), any steady-state distribution of completed durations
across �rms � 2 �F�1can be represented by the GTE with the sector shares
given by � 2 �F�1 : GTE (�). In each sector i there is an i�period Taylor
contract, with i cohorts of equal size (since we are considering only uniform
GTEs): The sector share is given by �i: Since the cohorts are of equal size

18See Table A7, p103. The reported numbers are for price-spells unweigthed by CPI
weights, for all products.
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and there as many cohorts as periods, there are �i:i�1 contracts renewed each
period in sector i. This is exactly as required in a steady-state. Hence the
set of all possible GTEs is equivalent to the set of all possible steady-state
distributions of durations. Note that the for the GTE we need to know
the DAF �. Although we can derive the DAF from the distribution of
price-spells �d, the latter cannot be applied directly to any price theory. In
e¤ect, since the distribution of durations ignores the panel structure of the
economy and the role of �rms in setting prices, it does not directly relate to
�rms pricing behavior.
In a GTE, the reset price at time t in sector i xit is (in log-linearised

form):

xit =

 
1Pi�1
k=0 �

k

!
i�1X
k=0

�kp�t+k (11)

where p�t is the optimal �ex-price at time t and � the discount rate. There
are F reset price equations, with i = 1:::F . The F prices in each sector i
are simply the average over the i cohorts in that sector:

pit =
1

i

i�1X
k=0

xit�k (12)

The aggregate price level is simply:

pt =
FX
i=1

�ipit (13)

It is simple to verify that the age-distribution in a GTE is given by (4).
If we want to know how many contracts are at aged j periods, we look at
sectors with lifetimes at least as large as j, i = j:::F . In each sector i, there
is is a cohort of size �i:i�1 which set its price j periods ago. We simply sum
over all sectors i � j to get (4). The GTE has been employed by Taylor
(1993), Coenen et al (2007), Dixon and Kara (2008), Kara (2008, 2009).

4.2 The Generalized Calvo model (GC): duration de-
pendant reset probabilities.

The Calvo model most naturally relates to the hazard rate approach to view-
ing the steady state distribution of durations and it has a constant hazard
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rate. We now consider generalizing the Calvo model to allow for the reset
probability (hazard) to vary with the age of the contract (duration depen-
dent hazard rate). This we will denote the Generalized Calvo Model GC. A
GC is de�ned by a sequence of reset probabilities: as in the previous section
this can be represented by any ! 2 [0; 1]F�1 where F is the shortest contract
length with !F = 1. From observation 1, given any possible GC there is a
unique age pro�le �A 2 �F�1

M corresponding to it and a unique distribution
of completed contract lengths from Proposition 1. Again, from corollary 3,
if we have a distribution of completed contract lengths, there is a unique GC
which corresponds to it. Thus, the two approaches to modelling pricing: the
GTE and the GC are comprehensive and coextensive, both being consistent
with any steady-state distribution of durations19.
The GC di¤ers from the GTE in that when they reset prices, �rms do

not know how long the price-spell is going to last. There is not a sector
speci�c reset price, but one economy wide reset price xt with xit = xt for all
i = 1:::F . The log-linearised formula for the optimal reset price at t is

xt =
1PF

k=1
k�
k�1

FX
k=1


k�
k�1p�t+k�1 (14)

The price in each sector i is then the average over the cohorts in that sector

pit =
1

i

i�1X
k=0

xt�k (15)

with the aggregate price being given by (13) as before, where the �i are
derived from the reset probabilities ! 2 [0; 1]F�1 using Corollary 2. The
di¤erence between the GTE and the GC lies in the whether the duration of
the price-spell is known: with the GC only the distribution of price spells
is known by the �rm. In e¤ect, the �rm does not know ex ante which
sector it is in. The GC model has been employed by Wolman (1999), Mash
(2003,2004), Dotsey and King (2006), Guerrieri (2006), Sheedy (2007) and
Paustian and von Hagen (2008).

19Note that an alternative parameterization of the duration dependent hazard rate
model is to specify not the hazard rate at each duration, but rather the probability of
the completed contract length at birth (see for example Guerrieri 2006).
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4.3 The Multiple Calvo Model (MC).

We now use the framework to address the issue of aggregation over Calvo
processes. Alvarez et al (2005), Bils and Klenow (2004) and Fougere et al
(2007) argue the aggregate hazard rate observed in the data declines over time
and that this can be attributed to the heterogeneity of hazard rates. We can
de�ne a multiple Calvo process MC as MC (!; �) where ! 2 (0; 1)n gives a
sector speci�c hazard rate20 �!k for each sector k = 1; :::n and � 2�n�1 is
the vector of shares �k (this might be expenditure or CPI weights). The
reset price for each sector k = 1:::n is then:

xkt =
1PF

j=1 (1� �!k)
j�1 �j�1

FX
j=1

(1� �!k)j�1 �j�1p�t+j�1 (16)

The average price in each sector k is then

pkt =
FX
j=1

(1� �!k)j�1 �j�1xkt�j+1 (17)

And the aggregate price is then

pt =
nX
k=1

�kpkt (18)

The Multiple Calvo model has been employed by Carvalho (2006) and Car-
valho and Nechio (2008) and the earlier version of this paper (2006).

4.4 The Typology of Contracts.

In terms of contract structure, we can say that the following relationships
hold:

� GC = GTE = SS. The set of all possible steady state distributions
of durations is equivalent to the set of all possible GTEs and the set
of all possible GCs.

20The notation here should not be confused: the substrcripts k are sectoral: none of the
sectoral calvo reset probabiltities are duration dependent.
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� C � MC � GC. The set of distributions generated by the Simple
Calvo is a special case of the set generated by MC which is a special
case of GC.

� ST � GTE = GC Simple Taylor is a special case of GTE, and hence
also of GC.

� ST \MC = ?. Simple Taylor contracts are a special case of GC, but
not of MC.

Figure 1: The typology of Contracts

This is depicted in Fig 1. The GC and the GTE are coextensive, being the
set of all possible steady-state distributions (Propositions 1 and corollary 3).
The Simple calvo C (one reset probability) is a strict subset of the Multiple
Calvo process MC which is a strict subset of the GC21.. The simple Taylor
ST and theMC are disjoint. The ST is a strict subset of the GTE: The size
of the distributions is re�ected by the Figure: ST has elements corresponding
to the set of integers and is represented by a few dots; Calvo is represented
by the unit interval; MC by the unit interval squared.

The simple Calvo and Taylor models are only applicable if there is one
type of contract and no heterogeneity in the economy. If we believe the
Calvo model, but that reset probabilities are heterogenous across price or
wage setters, then the MC makes sense. If we do not believe the Calvo
model, then either the GC or GTE are appropriate.

4.5 Price Data: an application to the Bils-Klenow Data
set.

In this section, we apply our theoretical framework to the Bils-Klenow Data
set (Bils and Klenow 1994). This data is the micro-price data collected
monthly for the US CPI over the period 1995-7. The BK data covers 350
categories of commodities comprising 68.9% of total consumer expenditure.
They focus on the proportion of prices that change in a month in each cate-
gory (sector). They then derive the distribution of durations of price-spells

21TheMC can be represented by a GC with a decreasing Hazard. See an earlier version
of the paper with the same title, ECB working paper 676, Proposition 2 for a derivation
in discrete time.
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on the assumption that there is a sector speci�c Calvo reset probability in
continuous time22. There are of course other data sets to which this method
can be applied: for example Klenow and Krystov (2008) and Nakamura and
Steinsson (2008) provide monthly frequency data for the US.
In this section I use the BK data to construct the distribution of durations

across �rms. Each sector has a sector-speci�c average proportion of �rms
resetting their price per month over the period covered. We can interpret
this as a Calvo reset probability in discrete time. The �rst approach we
adopt is to model this as a Multiple Calvo process BK �MC. The second
is to model the resulting distribution across all sectors. Within each sector
we have the Calvo distribution of contract lengths as derived in Dixon and
Kara (2006): using the sectoral weights we can then aggregate across all
sectors using the sectoral weights �k (the CPI weights).. This gives us the
following distribution of price-spells across �rms:

Fig 2: the BK Distribution of Contract lengths Across Firms

Note that the mean in our distribution is larger than is reported in BK.
This is because we are looking at the mean duration across �rms �T = 4:4
rather than mean price-spell �d = 2:7 . With the aggregate distribution of
contract lengths we can model this as either a GTE or a GC as well as an
MC. We therefore have three di¤erent pricing models with exactly the same
distribution of contract lengths..

4.6 Pricing Models Compared23.

We will see how the di¤erent models of pricing di¤er in terms of their impulse-
response using a very simple stripped-down log-linearised macro-model (see
Ascari 2003). Whilst we have used an extremely simple macro-model for
purposes of transparency, the pricing equations can be easily set in extended

22The use of continuous time leads to a lower expected expected duration at birth. If
the proportion resetting price is �!, the expected duration at birth is �1=In(1� �!). This
is less than the discrete time expectation 1=�!. The di¤erence gets proportinatley larger
as �! gets larger. The analysis in this paper is in discrete time becuase that is how the
pricing models are employed in the literature, and it provides spreadsheet simplicity and
transparency. Furthermore, a price is perfectly �exible in a quarterly model whether it
changes 1 or more times a quarter.
23I would like to thank Engin Kara for running the simulations in dynare.
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DGSE models like Smets and Wouters (2003) as in Dixon and LeBihan
(2009) : To model the demand side, we use the Quantity Theory24:

yt = mt � pt

where (pt; yt) are aggregate price and output and mt the money supply. We
model the monetary process as AR (1) :

mt = mt�1 + "t

"t = �"t�1 + �t

where �t is a white noise error term. We consider the cases of � = 0 and
� = 0:5.
The optimal �exible price p�t at period t in all sectors is given by:

p�t = pt + 
yt

The key parameter 
 captures the sensitivity of the �exible price to output25.
We allow for two values of 
 = f0:01; 0:2g: a high one and a low one as
discussed in Dixon and Kara (2008).
Given this rudimentary macro-structure, we can then insert the sectoral

reset-price equations26, and sectoral price equations into the model, and ag-
gregate according to (13) or (18).

Fig 3: Responses to a one-o¤ monetary Shock (� = 0)

In Figure 3, we depict the responses of output, the reset price, the general
price level and in�ation to a one-o¤ shock with 
 = 0:2. Looking at all the
graphs, it is striking that the three models of pricing have fairly similar
impulse-responses: none of them are far apart. However, in all cases the
MC and the GC are close together and the GTE is farther away, particularly
towards the end. To understand this, we can look at the IR for the average
reset price and the general price level. In the GTE case, the reset price

24In the case of � = 0 below, the quantity theory can be seen as resulting from the Euler
equation (see Ascari 2003).
25This can be due to increasing marginal cost and/or an upward sloping supply curve

for labour. See for example Walsh (2003) chapter 5 and Woodford (2003). chapter 3.
26For the GTE we have (11; 12) ; for the GC we have (14; 15), for the MC we have

(16; 17).
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rises less on impact than the MC or GC. This re�ects the greater myopia:
those cohorts resetting prices look less far ahead on average, so that they do
not raise prices as much as in the MC or GC case. At about 10 months
however, the situation is reversed: the GTE reset price exceeds the MC and
GC case: whilst the latter are slowing down price increases in anticipation
of the approaching steady state, the GTE maintains momentum for longer.
This comparative myopia of the GTE explains why the output response
starts o¤ above both the MC and GC, but ends up after 15 months below
both.

Fig 4: Serial Correlation in Monetary growth � = 0:5

In Figure 4 we consider the autoregressive monetary policy shock and
concentrate on the IR for output and in�ation for both the high and the low
values of 
. We �nd that there is now a more radical di¤erence between the
GTE and the other two models. If we look at in�ation we see that there is a
hump shape: the peak impact on in�ation appears after the initial monetary
shock: with the high value of 
 it happens at 3 months: with the low value
at around 20 months. Both theMC and the GC in�ation responses are not
hump shaped. This re�ects the �nding in Dixon and Kara (2008) that the
Calvo model does not capture the characteristic "hump shaped" response
indicated by empirical VARS. This "no hump" feature appears to be shared
by its generalizations MC and GC.
This simple example of the IR of major variables shows how di¤erent

models of pricing can yield di¤erent patterns of behavior even though the
distribution of contract lengths are exactly the same. The MC and the GC
do di¤er slightly, but are quite close, which re�ects the fact that they have
the same forward lookingness. It suggests that since the GC is computa-
tionally much simpler (you only have to model one pricing decision for all
�rms resetting price, rather than one for each sector), this model might be
preferred to the MC.

5 Conclusions

In this paper we have developed a consistent and comprehensive framework
both for analyzing di¤erent pricing models (excluding the state-dependent
pricing models) and relating the pricing models to the microeconomic data.
In particular, the distribution of completed price-spells across �rms (DAF )
is a key perspective which is fundamental to understanding and comparing
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di¤erent models. Any steady state distribution of durations can be looked
at in terms of completed durations, which suggests it can be modelled as a
GTE; it can also be thought of in terms of Hazard rates which suggests the
GC approach. Both the GC and the GTE are comprehensive: they can
represent all possible steady states.
We argue that the economic concept of nominal rigidity is not best cap-

tured by the mean duration of a price-spell, which puts excessive weight on
short spells (in the sense that all spells of any length have equal weight). The
cross-sectional approach we favour is a form of length-biased sampling, which
weights price-spells in proportion to their duration. The cross-sectional ap-
proach means we are averaging across the �rms that set the prices and hence
generate the price-spell distribution. Thus, the recent empirical evidence
on the mean duration of price-spells being 4� 6 months is quite compatible
with the empirical evidence from surveys that �rms reset prices on average
12 months or more. This enables us to understand the di¤erent measures of
nominal rigidity in the literature and why they obtain what at �rst seem to
be di¤erent results.
As more empirical micro-data becomes available, it is vital that we adopt

a framework which enables us to link the data to our macroeconomic models.
Whilst the approach adopted here is limited to steady-state analysis, it does
provide a consistent way for linking the micro-data to the macroeconomic
models of pricing. It is for future work to see how this analysis can be
applied to non-steady-state analysis and state-dependent models.
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7 Appendix.

7.1 Proof of Proposition 1 and Corollaries 1 and 3.

Proof. The proportion of �rms that have a contract that last for exactly
1 period are those that are born (age 1) and do not go on to age 2. The
proportion of �rms that last for exactly i periods in any one cohort (born
at the same time) is given by those who attain the age i but who do not
make it to i+ 1 : this is

�
�Ai � �Ai+1

�
per cohort and at any time t there are

i cohorts containing contracts that will last for i periods.
Clearly, since �Aj are monotonic, �i � 1, and

FX
i=1

�i =
FX
i=1

i
�
�Ai � �Ai+1

�
=

�
�A1 � �A2

�
+ 2

�
�A2 � �A3

�
� 3

�
�A3 � �A4

�
::::

=
FX
i=1

�Ai = 1

Hence � 2 �F�1:
The relationship between the distribution of ages and lifetimes can be

depicted in terms of matrix Algebra: in the case of F = 4:2664
�1
�2
�3
�4

3775 =
2664
1 �1 0 0
0 2 �2 0
0 0 3 �3
0 0 0 4

3775
2664
�A1
�A2
�A3
�A4

3775
Clearly, the 4� 4 matrix is a mapping from �3 ! �3: since the matrix is of
full rank, the mapping from �A to � is 1� 1. Clearly, this holds for any F .
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7.1.1 Proof of Corollary 1:

Proof. To see this, we can rewrite (3):

�1 = �A1 � �A2
�2
2

=
�
�A2 � �A3

�
�i
i

=
�
�Ai � �Ai+1

�
�F
F

= �AF

hence summing over all possible durations i = 1:::F gives

FX
i=1

�i
i
=

F�1X
i=1

�
�Ai � �Ai+1

�
+ �AF = �

A
1

So that by repeated substitution we get:

�A2 = �A1 � �1 =
FX
i=2

�i
i

�Aj =
FX
i=j

�i
i

j = 1:::F

7.1.2 Corollary 3.

Proof. Rearranging the F � 1 equations (5) we have:
�1
�!
= !1;

�2
2�!

= !2 (1� !1) :::
�i
i:�!

= !i
i; :::
�F
F �!

= 
F

By repeated substitution starting from i = 1 we �nd that

!i =
�i
i

 
�! �

i�1X
j=1

�j
j

!�1
(19)


i =
1

�!

"
�! �

i�1X
j=1

�j
j

#
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Since we know that !F = 1, from (19)this means that:

1 =
�F
F

 
�! �

F�1X
i=1

�i
i

!�1
) �! =

FX
i=1

�i
i

Substituting the value of �! into (19) establishes the result.

7.2 Proof of Proposition 2.

Proof. Firstly we will prove (a) and (b). We do this by contradiction. Let
us suppose that the solution � such that �k > 0 and �j > 0 and k � j � 2
We will then show that there is another feasible GTE �0 with �j > 0 and
�j+1 > 0 which generates a shorter average contract length.
Let us start at the proposed solution �; and in particular the two sectors

k and j, whose sector shares must satisfy the two relations:

�k + �j = � = 1�
FX

i=1;i6=j;k

�i (20)

�k
k
+
�j
j

= � = �! �
FX

i=1;i6=j;k

�i
i

� is the total share of the two sectors: if there are only two sectors then
� = 1; if there are more than two sectors with positive shares then � is equal
1 minus the share of the sectors other than j and k. Likewise, � is the sum of
the contribution of these two sectors to �! less the contribution of any sectors
other than j and k. Note that since k > j,

�

�
> j (21)

We can rewrite (20) as

�j =
kj

k � j � � (k � j) � (22)

�k = � (1 + k � j)� kj

k � j �

What we show is that we can choose
�
�0j; �j+1

�
which satis�es the two rela-

tions above (and hence is feasible) but yields a lower average contract length.
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Speci�cally, We choose �0j+1; �
0
j such that

�0j = j (j + 1) � � � (23)

�0j+1 � �j+1 = 2�� j (j � 1) �

De�ne ��j+1 = �0j+1 � �j+1: What we are doing is redistributing the total
proportion � over durations j and j + 1 so that the aggregate proportion of
�rms resetting the price is the same: �02A (�!) ;since (23) is equivalent to
(22) implies

��j+1 + �
0
j = � (24)

��j+1
k

+
�0j
j

= �

Lastly, we show that �0 has a lower average contract length. Since
we leave the proportions of other durations constant, their contribution to
the average contract length is unchanged. From (22) the contribution of
durations k and j is given by

Tk = kak + j�j

= �
�
k + (k � j)2

�
� kj�

Likewise the contribution with �0 is given by

Tj = (j + 1)��j+1 + j�
0
j

= � (j + 2)� (j + 1) j�

Now we show that

Tk � Tj+1 = �
�
k � (j + 1) + (k � j)2 � 1

�
� � (kj � (j + 1) j)

Noting strict inequality (21) we have

Tk � Tj+1 > �
�
j
�
k � (j + 1) + (k � j)2 � 1

�
� kj + (j + 1) j

�
> � [j (k � j � 1)] > 0

Hence
�T (�)� �T (�0) = Tk � Tj+1 > 0

the desired contradiction.
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Hence, the GTE with the minimum contract length consistent with the
observed �! cannot have strictly positive sector shares which are not consec-
utive integers. There are at most two strictly positive sector shares.
To prove (c) for su¢ ciency, if �!�1 = k 2 Z+, then if �k = 1 2 A (�!) : If

�k < 1 any other element of H (�!) must involve strictly positive �j and �i
with j � i � 2, which contradicts the parts (a) and (b) of the proposition
already established.
For necessity, note that if �!�1 =2 Z+; then no solution with only one

contract length can yield the observed proportion of �rms resetting prices.

7.3 Proof of Proposition 3.

Proof. First, note that if the proportions are given by the equations, then
the rest of the proposition follows. I know show that these equations are
indeed the maximising ones. Assume the contrary, that there is a distrib-
ution � with �i > 0 where 1 < i < F which gives the maximum contract
length. I show that this proposed optimum can be improved upon. Hence
the optimum must involve only durations f1; Fg and the given equations
follow automatically. So, let us take the proposed solution, with �i > 0. Let
us redistribute the weight on sector i between f1; Fg : In order to ensure that
we remain in H (�!) the additional weights must satisfy

��i +
��F
F

=
�i
i

��i +��F = �i

which gives us

��F = �i
F (i� 1)
i (F � 1)

��1 = �i
F � i
i (F � 1)

The resulting Change in the average contract length is

��T = �i

�
F (i� 1)
i (F � 1) (F � i)�

F � i
i (F � 1) (i� 1)

�
=

�i (i� 1) (F � 1)
i (F � 1) [F � 1] > 0
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The desired contradiction. Given that all contracts must be either 1 or F
periods long, the rest of the proposition follows by simple algebra.
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Fig.1. The Typology of contract types.

GTE=GC=SS

C

ST

MC



2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

Quarters

Figure 2: The BK Distribution of Contract lengths Across Firms
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