Estimating a Structural Model of Herd
Behavior in Financial Markets

Marco Cipriani, Douglas Gale and Antonio Guarino*

June 10th, 2006

Abstract

We develop and estimate a structural model of informational herd-
ing in financial markets. In the model, a sequence of traders exchanges
an asset with a market maker. Herd behavior, i.e, the choice to fol-
low the actions of one’s predecessors, can arise as the outcome of a
rational choice because there are multiple sources of asymmetric in-
formation in the economy. We estimate the model using transaction
data on a NYSE stock in the first quarter of 1995. We are able to
detect the periods of the trading day in which traders herd, and find
that they account for 15% of trading periods. Moreover, we find that
in more than 10% of days, herding accounts for more than 30% of all
trading activity. Finally, by simulating the model, we estimate the
informational inefficiency generated by herding. On average, because
of herding, the actual price is 0.4% distant from the full informtion
price. Moreover, in 2.8% of trading periods, the distance between
actual and full information prices is larger than 10%. This suggests
that the informational inefficiency caused by herding, although not
extremely large on average, is very significant in certain days.
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1 Introduction

In recent years there has been much interest in herd behavior in financial
markets. Especially after the financial crises of the 1990s, many scholars
have suggested that herd behavior may be a reason for excess price volatility
and financial systems fragility. This interest has led researchers to look for
both theoretical explanations and empirical evidence.!

The first theoretical work on herd behavior dates from the beginning of
the 90’s with the seminal papers of Banerjee (1992), Bikhchandani et al.
(1992), and Welch (1992). These papers do not discuss herd behavior in
financial markets, but in an abstract environment, in which agents with pri-
vate information make their decisions in sequence. They show that, after
a finite number of agents have chosen the same action, all following agents
will disregard their own private information and imitate that action. More
recently, a number of papers (see, e.g., Avery and Zemsky, 1998, Lee, 1998,
Cipriani and Guarino, 2001, Cipriani and Guarino, 2006) have focused on
herd behavior in financial markets. In particular, all these studies analyze
a market where agents sequentially trade a security of unknown value. The
price of the security is efficiently set by a market maker according to the
order flow. The presence of a price mechanism makes herding more difficult
to arise. Still there are cases in which it occurs. In Avery and Zemsky (1998)
people can herd when there is uncertainty not only on the value of the asset
but also on other parameters of the model. In Cipriani and Guarino (2001)
agents herd because they have other reasons to trade, in addition to infor-
mational motives. In this model, not only agents herd, but, in contrast with
Avery and Zemsky, a complete informational cascade arises.? Whereas the
theoretical research has tried to identify the mechanisms through which herd
behavior can arise, the empirical literature has followed a different track.
The existing work (see, e.g., Lakonishok et al., 1992, Grinblatt et al. , 1995,
Wermers, 1999, and the other papers cited in the survey of Hirshleifer and
Teoh, 2003) does not test these models directly, but analyzes the presence of

'In this paper we only study informational herding. Therefore, we do not discuss herd
behavior due to reputational concerns or payoff externalities. For critical surveys of the
literature on herd behavior see Gale (1996), Hirshleifer and Teoh (2003), and the book by
Chamley (2004).

2We will define the concept of herd behavior formally later in the paper. Here we note
that herd behavior refers to conformity in actions (e.g., all traders buy); informational
cascade refers to the actions being completely uninformative to the other agents.



herding in financial markets through statistical measures of clustering. These
papers find that in some markets fund managers tend to cluster their invest-
ment decisions more than if they acted independently. The existing empirical
research on herding is important, as it sheds light on the behavior of financial
market participants and in particular on whether they act in a coordinated
fashion. As the authors themselves emphasize, however, decision clustering
may or may not be due to herding (for instance, it may be the result of
a common reaction to public announcements). These papers cannot distin-
guish spurious herding from true herd behavior, i.e., the decision to disregard
one’s private information to follow the behavior of others (see Bikhchandani
and Sharma, 2000, and Welch, 2000). Testing informational models of herd
behavior is a difficult task. In these models herding in the financial market
consists in trading independently of private information. The problem that
empiricists face in the task of detecting herding is that there are no data on
the private information available to the traders and, therefore, it is difficult
to understand whether traders make similar decisions because they disregard
their own information and imitate or because of other reasons.

The purpose of this paper is to overcome this problem and offer an em-
pirical analysis of herd behavior which is not purely statistical. We present
a theoretical model of herding and estimate it using financial market trans-
action data. We are able to identify the periods in the trading day in which
traders act as herders according to the model. This is the first empirical pa-
per on informational herding that, instead of using a statistical, a-theoretical
approach, estimates a theoretical model.?

Our theoretical analysis is inspired by the work of Avery and Zemsky
(1998), who use a sequential trading model a la Glosten and Milgrom (1985)
to show the conditions under which herding can arise in financial markets. In
their model, traders trade an asset of unknown value with a market maker.
Traders receive private information on it. The market maker is uninformed
and sets the price of the asset on the basis of the buy and sell orders that
he receives. Avery and Zemsky show that, if the private information only
concerns the asset fundamental value, traders will always find it optimal to
trade on the difference between their own information (the history of trades
and the private signal) and the commonly available information (the history

3While there are no direct empirical tests of herding models, there is experimental work
that tests these models in the laboratory: see Cipriani and Guarino (2005) and Drehman
et al (2005).



only). Therefore, it will never be the case that agents neglect their informa-
tion and imitate previous traders’ decisions. They also show, however, that
when are multiple sources of asymmetric information between the traders
and the market maker (i.e., asymmetric information not only on the asset
value but also on other model parameters) herd behavior arises.

In our model, herding arises for a mechanism similar to that exposed by
Avery and Zemsky. Whereas Avery and Zemsky were interested in providing
some theoretical examples in which herd behavior can arise, our aim is to
estimate the importance of herding in real financial market. For this pur-
pose, we build a financial market model of herding that can be estimated
using market data. An asset is traded over many days. At the beginning of
each day, an informational event can occur or not. In the former case, the
fundamental asset value changes with respect to the value of the previous
day. It can be higher (in the case of a good informational event) or lower (in
the case of a bad informational event) than the value in the previous day. In
the latter case, instead, it remains unchanged. If an event has occurred, some
agents will receive private information on the new asset value.* These agents
will trade the asset to exploit their informational advantage on the market
maker. On the contrary, if no event has occurred, all traders in the market
will be uninformed: they will trade for non-information reasons only, e.g.,
liquidity or hedging motives. While the informed traders know that they are
in a market in which there is private information (since they themselves are
informed) the market maker does not know whether he is in an informed or
uninformed market for that day. This asymmetry in information determines
a different way of updating the beliefs on the asset value by the traders and
the market maker. The market maker will move the price “slowly” since he
has to take into account the possibility that the asset value has not changed,
the market is uninformed and all orders are coming from uninformed (noise)
traders. His interpretation of the history of trades will be different from the
traders’. There can be times in which, irrespective of his private signal, a
trader will value the asset more than the market maker and, therefore, will
find it optimal to buy; or he will value the asset less than the market maker
and will find it optimal to sell. These are the periods when herd buy or herd
sell arises.

To estimate our model, we will use a strategy proposed by Easley, Kiefer

4The event is called “informational” precisely because some traders in the market will
receive private information on it.



and O’Hara (1997). They show how to use transaction data to estimate the
parameters of the Glosten and Milgrom model with maximum likelihood.
We will construct the likelihood function for the trading of an asset over
many days. Our function takes into account that for some histories of trade
agents herd. This means that in these histories, the probability of a buy
or a sell order will be different from that when each agent follows his own
private information. Our task will be more complicated than Easley, Kiefer
and O’Hara’s. In their set up, informed traders are perfectly informed on
the value of the asset. Given that their signal is perfectly informative, these
traders’ decisions will never be affected by the previous decisions and they
will never herd. Therefore, the only thing that matters is the number of buys,
sells and no trades during the day. The sequence in which orders arrive is
irrelevant. In contrast, in our framework, history matters. Sequences with
the same number of buys and sells may occur with different probabilities
depending on the order in which buy and sell decisions arrive in the market.
Therefore, we cannot limit our analysis to the number of orders but we have
to consider the entire sequence of trades. Differently from Easley, Kiefer and
O’Hara we will estimate the model through a Bayesian analysis, i.e., we will
start from some prior for the parameters and we will compute their posteriors
conditional on the data.

We applied our methodology to the trading activity of Ashland Oil stock,
a stock traded in the NYSE, in the first quarter of 1995. We find that 7.3%
of the trading periods are characterized by herd buy and 8% by herd sell. In
15 (out 63) days of trade, herding periods were higher than 30% of the total
periods of trade. Therefore, although, on average herding is not so common in
the market, there are particular days in which it heavily characterizes traders’
behavior. In those days, herding behavior generated a significant deviation
of the price path from the full information level. Through simulation results,
we find that, because of herding, 2.8% of the times the price is more than
10% farther away from the price that would have prevailed if traders never
herded.

The paper is organized as follows. Section 2 describes the theoretical
model. Section 3 characterizes herd behavior and shows how it can arise.
Section 4 describes the estimation strategy. Section 5 describes the data.
Sections 6 presents the results, and Section 7 concludes.



2 The model

Our model is based on Glosten and Milgrom (1985) and on Easley and O’Hara
(1992), who generalize Glosten and Milgrom to an economy where trading
happens over many days.

In our economy there is one asset traded by a sequence of traders who in-
teract with a market maker. Trade occurs over many trading days, indexed by
d=1,2,3,...Time within each day is discrete and represented by a countably
infinite set of trading dates indexed by t = 1,2, 3, ...

The asset

The fundamental value of the asset in day d, V,, is a random vari-
able. Such a value does not change during the day. In day 1 the value
V; is distributed on the support {vf, v, v’} with the following probabilities:
Pr(V; = v) = (1 —a), Pr(V; = vF) = a(l =), and Pr(V; = vf) = af
(with 0 < @ < 1and 0 < § < 1). In any future day d > 2, the asset value
can remain the same as in the previous day, or change. In particular, Vj is
equal to vy_; with probability (1 — «) and changes with probability a. In
the latter case, it decreases to the value v;_; — AL with probability a(1 — ),
and increases to vy_; + A with probability ad, where AL > 0 and A > 0.
Note that we are assuming that informational events are independent over
days. To alleviate notation, we define v := vy_; + A# and v} :=V,_; — AL.
Finally, we assume that (1 — §)AL = A As will become clear in the next
pages, we required such a condition for the price to be a martingale.

The market

The asset is exchanged in a specialist market. Its price is set by a compet-
itive market maker (the specialist) who interacts with a sequence of traders.
At any time t = 1,2, 3...during the day a trader is randomly chosen to act
and can buy, sell or decide not to trade. Each trade consists of the exchange
of one unit of the asset for cash. The trader’s action space is, therefore,
A ={buy, sell,no trade}. We denote the action of the trader at time ¢ in day
d by X¢. Moreover, we denote the history of trades and prices until time
t—1by HZ.

The market maker

At any time ¢ of day d, the market maker sets the prices at which a
trader can buy or sell the asset. When posting these prices, he must take
into account the possibility of trading with agents who have some private
information on the asset value. He will set different prices for buying and for
selling, i.e., there will be a bid-ask spread. We denote the ask price (i.e., the



price at which a trader can buy) at time ¢ by a¢ and the bid price (i.e., the
price at which a trader can sell) by b¢.

Due to unmodeled potential competition, the market maker makes zero
expected profits by setting the ask and bid prices equal to the expected
value of the asset conditional on the information available at time ¢ and on
the chosen action, i.e.,

ap = E(Valhi, X} = buy,af’,by),
b = E(Valhi, X' = sell,af,bf).

We also define the “price” of the asset at time t as the market maker’s
expected value of the asset before the time-t trader has traded, i.e., pf =
E(Vq|h{).?

The traders

There are a countably infinite number of traders. Traders act in an exoge-
nously determined sequential order. Each trader is chosen to take an action
only once. Traders can be of two types, informed and noise. The trader’s
type is not publicly know, i.e., it is his private information.

Noise traders trade for unmodeled (e.g., liquidity) reasons: they buy with
probability 5, sell with probability $ and do not trade with probability (1—¢)
(with 0 < e < 1).

Informed traders have private information on the asset value. They are
present in the market in a day d only if an event occurred at the beginning
of the day that made the asset value go up or down with respect to the
previous day. Informed traders receive a private binary signal on the new
asset value and maximize their expected profit based on that signal (i.e., they
are risk neutral). The signal is a random variable S? distributed on {s, s*}.
We denote the conditional probability function of S? given a realization vg
of V; by o(s¢|vg). We assume that, conditional on the asset value v, the
random variables S¢ are independent and identically distributed across time.
In particular, we assume that

o(s*|vh) = a(s™|vl) = q € (0.5,1).

We use capital letters for random variables and small letters for their realizations.
For instance, h{ is a particular history realized at time ¢, while H{ denotes any possible
history until that time. Furthermore, from now on, to simplify the notation, we write
E(.ly) to mean E(.]Y = y), i.e., the expected value conditional on the realization y of the
random variable Y.



An informed agents knows that an event has occurred and his signal is
informative on whether the event is good or bad. Nevertheless, he is not
completely sure of the effect of the event on the asset value. For instance, he
knows that there has been a change in the investment strategy of a company,
but he cannot be completely sure that this change will affect the asset value
in a positive or negative way. The precision of the signal (¢) can also be inter-
preted as measuring the ability of traders to process the private information
that they receive.

When no event occurs, there is nothing agents can learn in that day and,
therefore, all agents in the market are noise. In contrast, when there is an
event, some agents receive a private signal on the new asset value and go
the market to exploit it. In this case, the proportion of informed traders is
€ (0,1). At each time ¢ in an informed day, an informed trader is chosen
with probability 1 and a noise trader with probability 1 — pu.

In addition to his signal, a trader at time ¢ observes the history of trades
and prices and the current price. Therefore, his expected value of the asset
is E(Vy|ht, sd).

His payoff function U : {v}, vg_1, v} x A x [vF, 02— R is defined as

vy — al if X = buy,
Uvg, X2, al,b3) = < 0 if X¢ = no trade,
b — vy if X = sell.

The trader chooses X¢ to maximize E(U(Vy, X2, af, b?)|hd, s¢). Therefore,
he finds it optimal to buy whenever E(V,|hd,s?) > a¢, and sell whenever
E(Vy|hd, s?) < bl. He chooses not to trade when b¢ < E(V,|h{, sd) < ad.
Finally, he is indifferent between buying and no trading when E(V,|h¢, s¢) =
ad and between selling and no trading when E(Vy|h{, s¢) = be.

2.1 Herd Behavior

Let us discuss now the predictions of our model. We start by considering the
equilibrium prices.

Proposition 1 At any time t, there exists a unique bid and ask price for the
asset, which satisfies b} < p¢ < ad.

Proof. See the Appendix.
The market maker takes into account that buying or selling orders contain
private information and sets a spread between the price at which he is willing



to sell and buy (Glosten and Milgrom, 1985). Equilibrium prices always exist
because noise traders are willing to accept any loss and, therefore, the market
will never shut down.

In order to discuss how herding arises in the financial market, let us
introduce the formal definition of herd behavior.

Definition 1 There is herd buying in equilibrium at time t of day d when,
if an informed trader trades at that time, he buys with probability 1, i.e.,
E(Vy|hd, s?) > al, for any s¢ € {s*, s"}. There is herd selling in equilibrium
at time t of day d when, if an informed trader trades at that time, he sells
with probability 1, i.e., E(Vy|h{, s¢) < bd, for any s¢ € {s’,sf}.

Definition 2 There is herd behavior in equilibrium between times t' and t”
(" > t') of day d if, for t = t',...,t", there is either herd buying or herd
selling.

Herding arises when informed traders act alike, i.e., they choose the same
action, independently of their private signal. Our definition of herding is
standard in the literature (see, e.g., Gale, 1996, and Smith and Sgrensen,
2000). Agents herd when they act independently of their own private infor-
mation. Because of this, there is conformity of action in the market.

Traders who herd can make the wrong decision. For instance, it is possible
that in a trading day characterized by a positive informational event, traders
in a period of herding neglect their positive information on the true asset
value and decide to sell it. In the cases in which agents neglect the correct
signal and take the opposite action, we say that herding is misdirected.

We can prove the following proposition:

Proposition 2 During an informed trading day, herd behavior arises with
positive probability. Furthermore, herd behavior can be misdirected.

Proof. See the Appendix.

Intuitively, the reason for the occurrence of herding is that the price,
although efficiently set by the market maker, moves “too slowly.” When
informed traders and market maker look at the past history of trades, they
interpret it in different ways. Suppose that a sequence of buy orders arrives in
the market. Informed traders, knowing that there has been an informational

9



event, attach a certain probability to the fact that these orders come from
previous traders with positive signals. The market maker attaches a lower
probability to this event, as he has to take into account the possibility that
there was no event at the beginning of the day and that all traders in the
market trade for non-speculative reasons. Therefore, after a sequence of
buys, he will update the price up, but less than if he knew that an event had
occurred for sure. As a result, even a trader with negative information can
have an expected value of the asset higher than the ask price and, therefore,
can neglect his signal to herd buy. The same logic explains herd selling: after
a sequence of sells, the bid price may be high enough that also traders with
positive information find it optimal to sell. Avery and Zemsky (1998) have
analyzed cases in which herd behavior can arise that are similar in the spirit
to that presented here.> Our analysis differs from theirs in that they discuss
herding in the context of theoretical examples that are not suitable for an
empirical analysis. But the logic of their argument to explain why traders
can neglect private information is similar to that presented here.

The presence of herding in the market is, of course, important for the
informational efficiency of prices. During periods of herd behavior, private
information is not aggregated by the price. This happens because traders do
not make use of the private information they have and, as a result, the price
cannot aggregate such information.

While the price does not aggregate private information efficiently, even
during a period of herding, the market maker does learn something on the
true asset value. Indeed, even in a period of herding, he updates his belief
on the fact that there has been an informational event or not, i.e., that the
asset value has changed or not. Therefore, the bid and ask prices are updated
even in a period of herding. To continue on the same example above, if the
market maker sees more traders to buy the asset, he will give more and more
weight to the fact that these traders are informed (liquidity traders would
indeed buy or sell with the same probability). Hence, he will post higher
prices. Because of this movement in prices, herd behavior will eventually
disappear. Agents will no longer find it optimal to neglect their signal and
private information will be aggregated by the market price.

Essentially, while in our model there is herd behavior, there is no in-
formational cascade. An informational cascade requires that the action be

6See their IS2 and IS3 information setups.
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independent of the asset value.” In a situation of informational cascade, the
market maker is unable to infer the traders’ private information from their
actions and, hence, is unable to update his beliefs on the asset value. In
other words, in an informational cascade trades do not convey any infor-
mation on the asset value. This is not the case in our model, since, while
informed traders do not use their private signals, still the traders’ actions are
informative on whether an event occurred or not.

Our model is a theory of temporary intraday herd behavior. In our model,
herd behavior arises because in some periods the prices, although efficiently
set by the market maker, are such that traders have an incentive to buy (or
to sell) independently of their private signals. Figure 1 shows the case in
which, following a series of buy orders, buy herding arise. In the figure, we
drew the bid and ask prices set by the market maker, the beliefs of a trader
with a positive signal and those of a trader with a negative signal. After a
long enough series of buys, the prices become lower than the expectations of
the trader with a negative signal; when this happens herding arise. The bid
and ask prices are lower than the expectations of a trader with a negative
signal since traders and market makers interpret the past history of trades
differently. In particular, the market maker must take into account the pos-
sibility of being in an uninformed day (whereas traders know that there was
an information event): in such a day there is no information coming from
trades and, therefore, the price should not be revised at all after a buy or a
sell. As a result, past buys convey more positive news on the asset values to
traders than to the market maker.

During a period of herding, the informed traders do not update their be-
liefs at all. They already know that they are in an informed day, and they also
know that the actions taken are independent of the private signal. The mar-
ket maker, instead, keeps updating his belief during, since the trades change
his posterior probability of whether an information event has occurred. Since
the market maker gradually learns that there was an information event, he
will gradually start interpreting the history of past trades more and more
similarly to the traders: as a result, herding will eventually stop. This is
illustrated in Figure 2, where, after some more trades, the bid and ask prices
cross the expectation of a trader with a negative signal. When this happens,
traders with a negative signal start selling and the herd is broken. This result

"Formally, nn informational cascade arises at time ¢ when Pr[X{ = z|h¢, ad,b¢, sd] =
Pr[X¢ = z|hd, ad,b] for all x € A and for all s¢ € {sF,sH}.
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is formalized in the following proposition:

Proposition 3 Suppose herd behavior starts at timet. Herd behavior cannot
last forever, i.e., it stops with probability 1 at a time t' € (t, 00).

Proof. See the Appendix.

Of course, during an informed day, herd behavior can start and break
more than once, in different times of the day. Nertheless, each period of
herding has a limited life.

Given that information always flows to the market (even during time of
herding behavior) and given that herding does not last forever, the price is
able to aggregate the information that traders receive. Since this information
is on average correct, the price will converge to the true asset value.® We
prove this result formally in the next proposition:

Proposition 4 In any day d the asset price converges almost surely to the
realized value of the asset.

Proof. See the Appendix.

Although information aggregation is slowed down during periods of herd-
ing, eventually the market maker learns whether in a day the market is
characterized by a good or bad event or, on the contrary, is uninformed.

3 The Likelihood Function

One of the characteristic of the model is that it is possible to write the
likelihood function for the sequence of buys, sells and no trades over many
trading days. This likelihood function depends on the five parameters of
the model. Let us define the complete history of trades in a single day as
ht = {hg}jil, where T} is the number of trading periods in day d. We
denote the likelihood function by

L(W) = Pr ({h"}iL,0)

8Recall that we have assumed that (1 — )AL = 6AH . This implies that E[Vy41|Va) =
V4. Since the price converges to the fundamental value almost surely, this guarantees that
also the conditional expected price for day d + 1 be equal to the closing price in day d,
i.e., it guarantees that the martingasle property of prices is satisfied.

12



where U = {«, §, q, i1, €} is the vector of parameters that characterize our
economy. In particular, let us recall that

« is the probability that there is an information event in any given day;

0 is the probability that the information event drives the fundamental
value of the asset up;

q is the precision of the signal;

1 is the probability that a trader is informed in an information day;

¢ it the probability that an uninformed trader trades.

Note that we write the likelihood function as the conditional probability
of the history of trades given the parameters, i.e., we omit the history of (bid
and ask) prices. In the model described above there is no public information
(all information is private); for this reason there is a one-to-one mapping
from trades to prices (and, therefore, the likelihood of trades and the joint
likelihood of trades and prices are the same). If we add public information
to the model, the one to one mapping from trades to prices breaks down
(since prices also reflect the accumulation of public information, whereas
trades do not). Nevertheless, since we are only interested in estimating the
parameters governing the arrival of private information, we can write the
likelihood function only in terms of transactions.

Informational events at the beginning of each day are independent of each
other. Trades in a day only depend on the value of the asset that day. For
this reason, a particular history of trades over multiple days can be written
as the product of the probability of the history of each single day. Then,

L(V) = Pr ({h"}].,|¥) =11, Pr(h*|V).

In order to understand the whole likelihood function, we must therefore
understand the likelihood of each single day. Note that

Pr(h?|¥) = (1 — a) Pr(h|V; = vg_1, ¥)
+a(1 — 6) Pr(h|Vy = v, ¥) + ad Pr(h4|V,; = of | W).

This means that we need to describe the probability of a history of trades
in any given day, conditional on that day being a day without an information
event or with positive or negative information event. Let us start from no
information event days. During a non informed day, the probability of each
buy or sell is §, while the probability of each no trade is (1 —¢). Let us
denote by By, Sy and N, the number of buys, sells and no trades in day d.
The probability of a history in day d can be written as:

13



e\ Ba+Sq
Pr(hd| U, Vy = vy_y) = K (5) (1— &),

where K is the number of permutations of By buys, Sy sells and Ny no trades.
From the above formula, it is clear that in a no-event day, we may expect
liquidity traders to buy or sell in a balanced way. In contrast, given that
informed traders follow an informative signal, when there is an informational
event there will be either a prevalence of buys or a prevalence of sells. This
is the feature of the trading process that allows us to distinguish between
information event day and no-information days.

Let us now compute the likelihood for a day in which there was a positive
information event. Since, in a day of information event, the probability
of a trade at any time depends on the evolution of beliefs until then, the
probability of a history of trades must be computed as

PT(hfﬂ/;j - UcIl{) - Hi:l PI‘(I?“L?, Vi = U(?)?

i.e., the probability of each trade depends on the previous history of
trades.’

Since, in an information day, the probability of a trade at time ¢ depends
on the sequence of trades until time ¢, our likelihood function cannot be
written as a simple function of the number of buys, sells and no trades in
each day, as done in Easley, Kiefer and O’Hara (1997). According to our
model, the sequence of trades, not just the number of transactions, conveys
information. Having many buy orders at the beginning of the day is not
necessarily equivalent to having the same number of buy orders spread during
the day. In fact, if there is a concentration of, for instance, buys at the
beginning of the day, this may create herd behavior. The market maker in
periods of herding will have to update his quotes (beliefs) in a different way
than in the absence of herding. Furthermore, the probability of a particular
sequence of trades in such a period of herding is different from the probability
of the same sequence in the absence of herding. Therefore, to estimate our
three parameters, we will not only use the number of buys, sells, and no
trades. Rather, we will use the entire sequence of trades during each day.

In order to compute Pr(z?|he,V; = vlf), we need to distinguish those
periods when agents follow their own signal from those periods in which they
herd. Let us start from the case in which there is no herding (i.e., informed

9Recall that x¢ deoted the action at time s of day d.
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traders follow their own signal). In this case, the probability of observing a
buy, a sell or a no trade at time ¢ in a positively informed day are

£
Pr(buyf|hf, Vi = v') = pg + (1 = p)3,

g
Pr(sellf|h{, Va = vi') = p(1 =) + (1 = p)3,

Pr(ntf|hf, Va = v) = (1 - p)(1 —e).

As we illustrated in the previous paragraph, after a prevalence of buys,
the expectation of a trader with a negative signal can be higher than the ask
price. In such a case, an informed trader will buy independently of his signal.
In this case, the probability of observing a buy, a sell or a no trade are

€
Pr(buyf|hi, Va = vi) = p+ (1= p)3,
Pr(sellf|nf, Va = i) = (1= )3,
Pr(nthd, Va = o) = (1 - p)(1—c).
Similarly, after a prevalence of sells, the expectation of a trader with a
positive signal can be lower than the bid price. In this case there will be herd
selling and the probabilities of each action will be

Pr(buyf|hf,Va = vil) = (1= )3,
Pr(sell{|hf.Va = vf)=p+(1-p)3,
Pr(ntf|hf,Va = vi) = (1 —p)(1—¢).

If we define three indicator functions I, Iy, I;,s for each case above (i.e.,
I, takes value 1 if there is herd buy and 0 otherwise), we can write the

probability of, for instance, a buy order in the case of a good event day as:!’
Pr(buy?|hd, Vy = o) =

g g

] o+ (1= 0)5] s + L) + [+ (1= ] (T + L.
10Besides the normal case and those of herd buying and herd selling, there are two inter-

mediate cases . The first occurs when, after a positive trade imbalance, b < E(V|h¢, s¥) <

pd. In this case, in equilibrium, the market maker computes the bid assuming that only a

noise trader would sell while an agent receiving a negative signal would not trade, and this

p+ (1= p)
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We can write the probability of any other action conditional on a good
event in a similar way. The analysis for the case of a bad event is identical.

To conclude our description, we need to understand how, for any values
of the parameters, we can determine whether we are in a situation of no herd,
herd buy or herd sell. Herd buying arises when an informed trader values the
asset more than the ask price posted by the market maker, independently of
his private information. Therefore, in order to check whether there is herd
selling at time ¢, we simply need to compare the expectation of the trader
with that of the market maker.

One could believe that in order to compare the traders’ and the market
maker’s beliefs, and decide in which of the cases illustrated above we are
at any time ¢, we would need data on the magnitude of the shock of the
information event that buffets the asset’s fundamental (i.e., that we would
need to estimate A and AL). We can easily show that this is not the case.
The expected value of the asset for a trader at time ¢ is

E(Valhi, sf) = vi Pr(Vy = vg|h{, sf) + vy Pr(Va = v |hf, s) =
vg_1 — ALPr(Vy = vk |hd, s8) + A" Pr(Vy = vl |hd, s9).

is indeed what happens. In this instance, the probabilities of a trade in a good information
day will be

5

Pr(buyf |, Va = vif) = pa + (1 = p)3,
Pr(selld|hd, Vy = vl) = (1 - ,u)%,

Pr(ntd|d, Vi = oll) = (1 — (1 — ) + (1 — ).

The other case occurs when, after a sequence of sells, p; < E(V|h{,s) < af, and in
equilibrium the market maker sets the ask assuming that only a noise trader would buy,
as it is indeed the case. Therefore, in a good information day

€

Pr(buy{ |h{, Vo = vf) = (1 - ﬂ)ia
Pr(sellf|hf, Va = vff) = u(1 = q) + (1 ),
Pr(nt{|hf, Vi = vi') = (1 - p)(1 - €) + pg.

The probabilities of each action on the case of a bad information day are computed
similarly. casi indifferenza
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On the other hand, the expected value of the market maker is

E(VIh) = vk Pr(Vy = vk |h) + vg_1 Pr(Vy = vf|hd) + of Pr(Vy = o |hd) =
—~ALPr(Vy = vf|hd) 4+ vg_1 + AT Pr(Vy = vf |nd),

Therefore, the difference between the two expectations is

[va_1 — ALPr(Vy = vj|h{) + A" Pr(Vy = o] |hf)] —
[v4—1 — ALPr(Vy = vi|h{, s{) + AT Pr(Vy = v |}, s])]
4]

- [_%AH Pr(Vy = vg|h{) + AT Pr(Vy = vg |hd>1

1-6
LA PV = o)+ A Pa(V = of i o) | =

1—9
A |52 (P = o )~ Pr(Vi = o) -
Pr(V, = off|H{. ) + Pr(Vs = of]| )

whose sign is independent of how big the positive or negative news is.!!
This means that, in order to understand whether we are in a period of herding
or not, we do not need to estimate the magnitude of the information shock
that hits the asset.

4 Bayesian Estimation of the Model

The main objective of our work is to estimate the structural model of herd
behavior that we have just illustrated. After estimating the model, we will
be able to detect the herding periods during the trading days.

We carry out the estimation in a Bayesian framework, simulating the
posterior distribution of the parameters conditional on the data. All the five
parameters in the model are assumed to be random variables with a given
prior distribution. For all the parameters, except ¢, the prior distribution
is assumed to be uniform on the interval [0, 1]; the prior distribution of ¢ is
assumed to be uniform in the interval [1/2,1].

UFor simplicity, we have studied the difference between the trader ’s expectation and
the asset price (i.e., the market maker’s expectation before trader ¢ trades). It is straight-
forward to repeat the argument for the bid and the ask prices.

17



In order to draw from the posterior distributions of the parameters, we
generate random samples using a Markov-Chain Monte Carlo (MCMC) pro-
cedure. In particular, using the "Metropolis-Hasting " method, we sequen-
tially sample from the posterior distribution of one parameter conditional to
the other four.!?

Under regularity conditions (see Geweke, 1996 and 1997) here satisfied,
the Markov chain so produced converges, and yields a sample from the joint
posterior distribution of the parameters conditional on the data. In the Sec-
tion “Results” we present the average and the standard deviation of 1,000,000
draws from the posterior distributions of each parameter.'® In computing the
average, we discard the first 100,000 draws from a “burn in” phase.

Finally, let us remark that to estimate all our parameters we clearly need
data on more than one trading day. The parameters o and 0 define the
probability that there is an event at the beginning of a trading day and that
the event is good or bad. Therefore, if we used data on one day only, this
would be equivalent to observing just one draw from a joint distribution
with parameters a and §. Clearly we would be unable to estimate these two
parameters. For this reason, we will use data for many days.

5 Data

We use data for Ashland Oil, a stock traded in the New York Stock Ex-
change.!* We took data for this stock from the TAQ dataset. This dataset
reports a complete list of the posted prices (quotes), the price at which the
transactions occurred (trade), the size of the transactions and, of course, the
time when the quotes were posted and the transaction occurred. We use
transactions data on this stock for the first quarter of 1995. In this period
there were 63 trading days.

In order to extract the history of trades from this dataset, we had to
make several transformations. First, these data do not say who initiated the
trade, i.e., whether the transaction was a sell or a buy. In order to classify a

12 As starting values we use the mode of the posterior distribution (which, since the
priors are flat, is the maximum of the likelihood function). We estimate the mode using a
genetic algorithm optimization method.

13The results we obtain are not significantly different if we use the posterior mode instead
of the posterior mean.

14This is the same stock studied by Easley, Kiefer and O 'Hara 1997.
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trade as a sell or buy, we had to compare the trade with the quotes that were
posted at the time of the transaction. For this purpose, we used the standard
algorithm proposed by Lee and Ready (1991). We compared the transaction
price with the quotes that were posted just before the transaction occurred.
Any trade above the midpoint was classified as a buy and every trade below
the midpoint was classified as a sell; trades at the midpoint were classified as
buy or sell according to whether this price had increased or decreased with
respect to the previous transaction price.!” '® Given that transaction prices
are reported with a delay, we followed Lee and Ready (1991) suggestion of
moving each quote ahead in time for five seconds.

Second, clearly these data do not contain any direct information on “no
trades.” But, of course, there is a significant difference between an hour of
trading in which many transactions occur and an hour in which there is none.
We used the convention of classifying any period of five minutes in which no
transaction occurred as a no trade. For instance, we considered a period of
20 minutes between two transactions as four no trades. The choice of five
minutes is, of course, arbitrary, as it would be for any other integer. As a
robustness check, we also used other alternative intervals.

As we said, we considered a sample period with 63 trading days. On
average, we observed 100 transactions (either buys or sells) a day; our five
minutes rule implied on average 33 no trades a day. There were more buys
than sells in our sample: 38.7% of periods were buys, 35.7% were sells and
25.6% were no trades.

6 Results

Table 1 shows the average and standard deviation of the posterior distribution
of the model parameters:

Table 1: Estimation Results
Parameter Estimate Standard deviation

a 0.79 0.057
5 0.68 0.097
[ 0.24 0.018
5 0.66 0.027
q 0.69 0.006

15There were only 16 trades at the midpoint in our dataset.
16Tf there was no change, then we looked at the previous price movement and so on.
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If the specification we adopted is correct, informational events are quite
frequent: 79% of trading days are in fact classified as days in which some
trading activity was motivated by private information. There is a certain
imbalance between good and bad news. Good informational events account
for almost 70% of the informed days. During informed days, the proportion of
traders with private information is, on average, 24%. The remaining trading
activity is explained by noise traders. Noise traders traded 66% of the time,
and did not the remaining 34%. The precision of private information is
just below 70%. Such a precision of the signal, strictly lower than 1, opens
the door to herd behavior. On the basis of these parameters, we tracked
down the beliefs of the traders (with a positive or negative signal) and the
beliefs of the market maker (i.e., the bid and ask prices) during each trading
day. By comparing such beliefs we can detect periods in which, according
to our model, there was herd behavior in the market. These are periods in
which an informed trader would have made the same decision independently
of the signal he received. For instance, when the belief of the trader is
higher than the equilibrium ask even if he received a negative signal, we
classify this period as herd buying. Similarly, when the belief of the trader
is lower than the equilibrium bid even if he received a positive signal, we
classify this period as herd selling. We found that 7% of trading periods are
of herd buying and 8% are of herd selling. It is important to remark that
herding periods are relevant for the informational (in)efficiency of the market.
Indeed, during herding periods, the market is unable to learn whether the
traders received a positive or a negative signal. Although the market maker
still learns something from the trading activity (namely, whether he is in
an informed or uninformed day), information is aggregated less efficiently
and the price converges more slowly to the fundamental asset value. For the
period under analysis, we found that herding was pronounced in 23 days (out
of 63). In such days, at least 15% of the trading periods were characterized
by herding behavior. In 7 days, in particular, herding was very pronounced,
since it characterized more than half of the trading periods.

Table 2: Number of days in which herding periods were frequent.
>50% >30% > 15%
7 15 23

To have a better understanding of the inefficiency produced by herding
behavior, we simulated 10,000 days of trading in a financial market with
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our estimated parameters. We then simulated the same days of trading
with the same parameters but assuming that traders, instead of behaving
rationally as in our model, always followed private information. We took
this as a benchmark case, since in this case all private information would be
revealed by the trading decisions. We compared the price paths under the
two scenarios. We considered the absolute difference at each time of every
trading day between the simulated price and the full information price. We
found that the average distance between the two prices is 0.4%. In other
words, the presence of herding determined a deviation of the price from the
full information level of 0.4% on average during each day. Moreover, in
2.8% of trading periods, the distance between the two prices was larger than
10%. This suggests that there are times when intraday herding affects the
informational properties of the price in a very significant manner.

7 Conclusion

We estimated a model of herding behavior in financial markets. We used
transaction data for a stock traded in the NYSE. We estimated the para-
meters of the structural model and detected periods in each trading day in
which, according to our model, informed traders chose the same action in-
dependently of whether they had positive or negative private information on
the value of the stock, i.e., they herded. We found that herding is present in
the market. In some days of trade it is fairly pervasive. In our future research
we will apply our methodology to verify whether herding is more pronounced
in particular markets, and in particular times (like during financial crises).
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8 Appendix

8.1 Proof of Proposition 1

First, we prove the existence of the ask price. Because of unmodeled potential
Bertrand competition, the ask price at time ¢, a¢, must satisfy the condition

at = E[V|h§l7Xd = 17 ?7bd]

Let us define I as a random variable that takes value 0 if the agent at
time ¢ in day d is noise and 1 if he is informed. The expected value of the
asset at time ¢ in day d, given a buy order at the ask price a, is

E[V“L?’Xtd = 1,af,bf] =
EVIRE, X¢ = 1,af, b8, IF = 1) Pr[If = 1|h¢, X = 1,af, b7] +
EVIh,af, b I} = 0] Pr[I = 0|y, X} = 1, a, bf].

Let us consider the correspondence v : [vF, v = [v}, vF] defined as
P(ad) ;== E[V|hE, X¢ = 1,a¢,b}], and let us make the following observations:

1) If af > E[V|hd, S¢ = sf], Pr[Id = 1]hd, X = 1,a¢,b¢] = 0 and
EIVIH, X = 1a 4] = EVIRE X = 1,16 = 0],

2) If E[VIhd, 8¢ = st < af < E[VIhE, S? = sf], then E[V|he, X; =
1,ad,bd) = (V|hd I =1,5 = sH)Pr(I¢ = 1,5 = s"|hd)+
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BIVIh, 18 = 0] (1 - Pr(I = 1,5 = s [1s)).

3) If al < E[V]hd, 8% = s, then E[V|hd, X3 = 1,ad,bf] = E(V|hd, I§ =
1) Pr(If = 1|h) + E(V|h{, I = 0)(1 — Pr(I} = 1|h{)),

where, of course, since the ask would be lower than the expectation of a
trader with a negative signal, the conditional expected values and probabil-
ities are computed assuming that an informed trader buys whatever signal
he receives.

Finally note that

4) If a¢ = E[V|h¢, S = sf], then the informed trader receiving a posi-
tive signal can randomize between buying and not trading. If he buys with
probability 0, then

E[V|hi, X& =1,a¢,b¢] is equal to the expression indicated in Observation
1. If he buys with probability 1, then E[V|h¢, X = 1,a,bd] is equal to
the expression indicated in Observation 2. If he buys with any probability
belonging to the interval (0,1), then E[V|h¢, X = 1,a¢, b?] takes any value
between these two expressions.

5) Similarly, if af = E[V|h¢, S? = s%], then the informed trader receiving
a negative signal can randomize between buying and not trading. If he buys
with probability 0, then

E[V|hi, X¢ =1,a¢,b¢] is equal to the expression indicated in Obseration
2. If he buys with probability 1, then E[V|h{, X? = 1,a,bl] is equal to
the expression indicated in Observation 3. If he buys with any probability
belonging to the interval (0,1), then E[V|h¢, X = 1,a¢, b?] takes any value
between these two expressions.

Observations 1, 2, 3, 4, and 5 imply that the correspondence v is piecewise
constant. Furthermore, for af = E[V|h{, S¢ = s'] and af = E[V|h{,S¢ =
sf], 1(al) takes all the values belonging to the intervals indicated above
in observations 4 and 5. Therefore, it is immediate to see that the corre-
spondence t(af) is non empty, convex-valued and has a closed graph. By
Kakutani’s fixed point theorem, the correspondence has a fixed point. If
there is more than one fixed point, the ask price will be equal to the min-
imum of them (it is straightforward to show that the other fixed points do
not represent an equilibrium, due to the potential Bertrand competition that

the market maker faces).
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The proof of the existence and uniqueness of the bid price is analogous.

The proof that by < pf < af follows immediately from the proof in Glosten
and Milgrom (1985, p. 81).

8.2 Proof of Proposition 2

Suppose V; = VL. After a series of buy orders, the traders attach a higher
probability to V; = V' (for whatever signal they receive). Such a probability
goes to 1 when the number of buys goes to infinity. Therefore, we can
always find a sufficiently high ¢’ such that, after a histoy of ¢ buy orders,
EVy|h, 1, s"] > Vg_1+ € where € > 0. Let us assume that in these ¢’ periods
herding has not arisen (otherwise the proposition is already proven). Now
note that a no trade does not affect the traders’ beliefs, since it only comes
from noise traders. That is, E[Vy|h{_ ,,ntys1,s] = E[Va|hé 1, ntyiq,s]. In
contrast, a no trade always increases the probability that the market maker
attaches to V; = V;_;. Indeed, after a no trade, Pr[V; = V,_,|hd, X =
0,ad,bd] =
(1—€) Pr[Vy=Vy_1|h{]

(1—p)(1—¢) [Pr[Va=VH |hd]+Pr[Va=V L |hf]|+(1—¢) Pr[Va=Vy_1|h{]
than Pr[V; = V,_1|hd].

Therefore, for any ¢ > 0 and for any set of values for the parameters
{a, 8, 1, q,e}, we can always find a number of ¢” no trades sufficiently high
that, in equilibrium, E[Vy|hf .y, Xt = 1,08 0, b0 q] < Vaor + e
At this point, herd behavior arises and is misdirected. Such a history A,
occurs with positive probability, because of noise traders. This shows that
(misdirected) herd buying occurs with positive probability. The proof for
(misdirected) herd selling is analogous.

which is obviously greaterl

8.3 Proof of Proposition 3

Let us consider herd buying. During a situation of herd buying, informed
traders buy independently of their signal. Suppose the period of herd buying
is never broken, i.e., it lasts for ever after it has started at some time ¢. In
such a case, the probability of each action after t is always the same. The
conditional probabilities of a buy are given by Pr[X¢ = 1|h¢ af,bd,V; =

VH] = Pr[X{ = 1|hf, af, b8, Vy = VE] = [u+ (1 — p)g],
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Pr[Xd = 1|ht,at,bf,Vd = ‘/d 1] =
Pr[X? = —1|h¢, ad, b}, Vy = VH] = Pr[X

The probabilities of selling are
1‘ht7atab§l>vd VL] = (1_

ﬂp..l\?lm

Pr[X ¢ = —1|nd,af, b}, Vy = Vyq] = 5. Finally, the probabilities of not
trading are Pr[X? = O|h{,al,0d,Vy; = V] = Pr[X? = 0|h¢,ad, b, Vy =
Vi = (1 - —e),

Pr[X® = 0|hd,ad, b8, Vy = V1] = (1 — ¢). Let us denote by 3,0,v, the
number of buys, sells and no trades observed during a certain period after
herding has started in ¢. Then,

Pr[Vy=VH|he B,0,v] =

[+ (1—p) £18[(1—p) 517 [(1—p) (1—e)]” Pr[Vy=VH |nd]
K )

Pr[Vy = VE|RE, B,0,v] =

[t (1—p) £1°[(1—p) 5§17 [(1—p) (1—e)]” Pr[Vy=VL|n]
K ’

Pr[Vy = Vyi|hd, B,0,v] =

B+
(5)"77 (1—e)¥ Pr[Vy=Vy_1|h{]
K b

where K = [u+(1—1) §1°[(1—2)§17[(1— ) (1—0)}¥ (Pr(Va = V|1 + Pr[V =

(5)777 (1 — o) Pr[Va = Vi ).

Therefore, the probability that an event occurred at the beginning of day
d is
Pr[Vy = VH|hd B,0,v] + Pr[Vy = VERL B, 0,v] =
[1+(1—p) §1°[(1—p) §17[(1—p) (1=e)] (Pr[Va=V " |n{ ]|+ Pr[Va=V " |{])
7 :

The likelihood ratio between an event occurring or not is
Pr[V,=VH|ni B,0,v]+Pr[Vy=VE|ni B0 v
Pr[Vy=Vy_ 1|h ,B,0,v]

lut (A=) 517 (A=) 517 (A=) A=) PrVa=VH |+ Pr[Va=V " |hi])
[51°+71(1—€)]” Pr[Va=Va_1|h{]

The loglikehhood ratio can be expressed in the following way:

[nt(1=p) 5171 =) 517 (A=) A=) (Pr[Va=V " |h{]1+ Pr[Va=V E |n{]) _
(5)7 (—e PrlVe=Va 1

_VH|pd —_vL|pd

log (PrlVa= PR VD oy g log PSS 4 o log(1 — ) + v log(1— ).
—rva— t 2

By dividing both sides by the total number of buys, sells, and no trades,

we obtain
1
B+o+v

log

Pr[Vy=VH|ni 8,0 V] +Pr[Vy=VE|nt,Bov]
Pr[Vy=V4_1|h{.B,0,V]

log
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1 (Pr[Va=VH |hd]+Pr[Vy=V L |h{])
B4o+v Pr[Vy=Vy_1|h{]

+(1 135 o
ﬁ+cﬁr+u - =+ B+o+v log(l B 'u) + 6+a+u log(l - M)
Now, suppose there has been an event (i.e., V; = VL or V; = V) and

let (5 + 0 +v) — oco. Then,
1 PrVa=V " |hfl+Pr[Va=VEIh{]) _
B+o+v Pr[Vy=Vy_1|hd] ’
s S+ (- W),
B+(c7r+1/ = [(1 - M)%]v
s S (- (- )],
where the convergence almost surely just results from the law of large

numbers. Hence, as time goes to infinity (and herd never stops):
1 Pr[Vd:VH\h ,B,0,v]+Pr[V;= VL|ht B0 l/]
B+o+v Pr[Vd Va_1|hd,B,0,V]

[+ (1—p)5]log = %“)2 +(1—=p)5log(l—p)+(1—p)(1—¢)log(l—p) =
-+ (1= )5 log =52 + (1= (1 — 5) log(1 — o).
It is easy to show that the RHS is positive.

Therefore,
Pr[Vy=VH|n¢ 8,0 v]+Pr[Vy=VL|hi B,0,0]

_|_

log

log (

log

1 P
Arots log Pr(Va=Va 1 1hdB.0,7] converges to a positive constant.l
This implies that
Pr[Vy=V*H|hi 8,00+ Pr[Va=V*|h{,8,0,v]
log Pr[Vd:Vdfl‘h?76’07y} - +OO,
that is,
Pr[Vd:VH|hf,,6’,o,u]+Pr[Vd:VL|hf,ﬂ,a,u] — +00.

Pr[Vd:Vd_1|h§l7ﬁ,U,V]
If herd buys keeps forever, the belief that there has been no event con-

verges to 0. During the period of herding, the informed traders do not up-
date their beliefs, i.e., Pr[V; = VH|hd, 3,0, v, 5] = Pr[Vy = VH|hd, 5] for s =
{sl, s}, Hence, when Pr[V; = Vy_1|hd, 8,0,v] — 0, E[Vy|he, B, 0,v,st] <
E[Vy|hd, B,0,v] < E[VyhE, B,0,v,s], which contadicts that herd buying
keeps forever.

The proof for the case of herd selling is analogous.

8.4 Proof of Proposition 4

Let us consider the case in which V; = V. We know from the proof of
Proposition x that during periods of herding the market maker only learns
about the probability of an informational event, while the loglikelihood ratio
between the event being good or bad does not change. Indeed, from the
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proof of Proposition x we immediately obtain that, during periods herding,

Pr[Va=V|hi 8,0, Pr[Vy=V|nd . . .
Prr[[vizvﬂ‘hé,g;:]} = Pz[[VZ:VLI‘hé]]' Now we show that during the (infinitely
y) periods of non herding, ViV OO

Suppose that during periods of non herding there are § buys, ¢ sells and
v no trades. In such periods
Pr[Vy = VW, B,0,v] =

[ng+(1—p) §1° [p(1—q)+(1—p) §17[(1—p) (1—€)]” Pr[Va=V " |n{]
K Y

Pr[Vy = VIR, B,0,v] =
((1—q)+(1—p) £1° [pg+(1—p) £17 [(1—p) (1—€)]” Pr{Va=VL|ng]
K ’

Pr[Vy = Vi 1|hd, B,0,v] =

(5)7"7 (1—e)” Pr[Va=Vy_1[n]

where K = [ug+ (1 —p)5]°[p(1 —q) + (1 — p)5)7[(1 = ) (1 — &))" Pr[Vy =
VH|hd)+

11— q)+ (1= w5 lug + (1 — w1710 — w)(1 — )] PalVa = VE|h+
(5)777 (1= &) PrlVa = Vi |Bf).

2

The likelihood ratio between an event being good or bad is
Pr[V,=VH|ni Bov]

Pr[Vy=VL|n¢,B,ov] —

[na+(1—p) 517 [(1—q)+(1—p) 517 Pr[Va=VH|hf]

[1(1=a)+(1=p) 510 [ng+(1—p) 517 PrlVa=VL|hd] "

The loglikelihood ratio can be expressed in the following way:
1 [na+(1—p) 517 [(1—q)+(1—p) 517 Pr[Va=VH|nf]

((1=q)+(1—p) 51P [pg+(1—pn) 5] Pr[Vd=VL\h?33 -

Pr[Vy=V"|ni,8,0,v] [pg+(1—p) 5] [n(1—q)+(1—p) 5]
Prva=vIirggon T PlO8 g riomge T 0108 Tharamg

By dividing both sides by the total number of observed buys, sells and

no trades, we obtain
1 Pr[Vd:VH‘hgﬁﬂ'vV] J—
B+o+v Pr[deVL|hgw370'7V] o
1 Pr[Vy=V¥|nd B,0.v] +
B+o+v Pr[Vd=VL|h§l75»UyV]
3 [ng+(1—p)51° o
FroTv 08 =g+ 3] | FroTs
Let (8 + 0 4+ v) — oo. Then,
1 1o (PrlVa=V B+ Pr{Vy=V " nf)
B+o+v g Pr[Vg=Vy_1|h{]

5+¢B7+1/ = [:uq + (1 - M)%]?

TS w1 - q) + (1 - p)3),

log

(p(1=q)+(1—p) 5]
[ng+(1—p)5]

log

—_

— 0,
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S S (L ) (1 - )]
where the convergence almost surely just results from the law of large

numbers. Hence, during the infinitely many periods of non herding:
1 Pr[Vy=VH|n¢ 8,00
Brotv 08 Br(Vy=VI|nd 5o
[n(1=q)+(1-p)5]

£ [na+(1-p)5]° e
g+ (1= p)5)log ooz + (L —q) + (L= p) 5] log PrEEnE

=
2

It is easy to show that the RHS is positive.

Therefore,
1 1 Pr[devH\hfﬁ,U,V}
B+o+v Pr[Vd:VL|hfﬂ,UyV]

VERE, B,0,v] — 0.

Since during periods of herding ij%jf",’jﬁ gz;']}
result immediately shows that the market maker learns that the asset value
cannot be V; = VL. An analogous proof shows that, during periods of
non-herding, Pr[V; = V;_4|h¢, 3,0,v] — 0. From the proof of Proposition
x we know that, if there were infinitely many times of herding, Pr[V,; =
Va1lhd, B,0,v] — 0. Therefore, this immediately implies that the market
maker learns that the asset value cannot be V; = V,_;.

The proof of convergence for the case in which V; = V! is analogous.
The converges for the case in which V; = Vj;_; is proven by invoking the law
of large numbers, as done above (since the probability of each action is the
same at each time ).

converges to a positive constant, i.e., Pr[V; =

remains constant, this
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